
Web System for Visualizing and Executing Methods
on Web Objects in XML

Betzabet García-Mendoza, José M. Hernández-Salinas, Carlos R. Jaimez-González
Departamento de Tecnologías de la Información

Universidad Autónoma Metropolitana, Unidad Cuajimalpa
Mexico City, Mexico

Email: {bgmendoza, cjaimez}@cua.uam.mx

Abstract—This paper presents a web system that allows to
display and execute methods on objects created with the Web
Objects in XML (WOX) framework, where the user can provide
values for each of the method parameters through a web interface.
The paper also reviews some existing systems with similar
functionality and shows some of their relevant features. The
interface of the system is presented, along with some examples that
demonstrate its functionality, in particular, the paper shows how
a user can display and execute methods on WOX objects. It should
be noted that WOX is a framework that allows the creation of
object-based distributed applications, which are interoperable
among different object-oriented programming languages. WOX
uses XML as the format representation for objects, and it uses
HTTP as its transport protocol.

Keywords—Web Objects in XML; visualization of methods,
execution of methods, distributed objects

I. INTRODUCTION

The web system outlined in this paper serves as a
complementary component to the Web Objects in XML (WOX)
framework [1]. This framework is designed for the creation of
distributed, object-oriented applications. WOX allows the
development of distributed systems, employing XML as the
format for representing objects and the messages exchanged
between them [2]. Additionally, it offers both synchronous and
asynchronous communication between clients and servers [3].
WOX incorporates unique features from two important
paradigms in the development of distributed systems: the object-
oriented approach and the web-based approach. Furthermore,
WOX has the capability to store objects in Java [4], C#, Python
[5], and PHP [6] programming languages, which can be created
by either local or distributed applications.

The rest of the paper is organized as follows. Existing
systems are presented in section 2, which have a similar purpose
to the web system described in this paper. Section 3 provides an
introduction to the WOX framework. Section 4 describes the
actions that can be carried out by the developed web system, and
shows some interface prototypes. Section 5 shows the web
system in operation, in particular the visualization and execution
of methods on objects are presented. Finally, section 6 discusses
the conclusions and future work.

II. EXISTING SYSTEMS

This section presents some systems that share similarities
with the web system discussed in this paper. The systems under

examination include the following: CORBAWeb [7], SopView+
[8], PESTO [9], CORBA Object Browser [10], and Apache
Axis2 [11]. A more detailed comparative analysis of these
systems is presented in [12], along with a concise overview of
the features that were considered during the evaluation.

CORBAWeb is a system described in [7], which is an
intermediary between the web and the Common Object Request
Broker Architecture (CORBA). It is an object browser, designed
to enable clients to inspect and execute methods on local or
remote CORBA objects via a web browser. This system allows
clients to navigate through CORBA object links using
dynamically generated URLs for each remote object.
CORBAWeb operates within a web browser interface, allowing
users to access and execute methods on remote objects hosted
on a server. In order to achieve this, it automatically generates
HTML forms from the Interface Definition Language (IDL),
facilitating the invocation of methods for any CORBA object.
CORBAWeb interprets the user's actions, communicates with
the required remote object to execute the object's method,
retrieves the result, and ultimately delivers an HTML document
containing the results of the method execution.

SOPView+ is a project detailed in [8], created within a
UNIX environment and utilizing the Motif widget tool for
constructing a graphical interface. The main objective of this
project is to develop an object browser and viewer, primarily
designed for querying and managing object-oriented databases.
This system enables users to explore the database, locating their
desired object, retrieve its information, and view it in a graphical
format. Additionally, the tool organizes objects hierarchically
and facilitates navigation within extensive databases by
allowing users to select a base object, which serves as the
starting point for navigation. SOPView+ allows users to modify
the base object during their search for objects within databases
by placing an anchor on the object. This feature simplifies the
process of exploring objects in large databases.

PESTO is a system explained in [9] that originates from the
GARLIC project [13], which aims to construct an information
system capable of integrating data from various database
systems. This data is accessible through a SQL-like language
that incorporates object-oriented features. The GARLIC
project's core objective is to introduce a fresh interface for
querying and navigating objects, referred to as the Portable
Explorer of Structured Objects (PESTO), which features its
unique interface for object exploration and is tailored to interact

1541

2023 International Conference on Computational Science and Computational Intelligence (CSCI)

2769-5654/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCI62032.2023.00254

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

ta
tio

na
l S

ci
en

ce
 a

nd
 C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (C

SC
I)

|
97

9-
8-

35
03

-6
15

1-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
CI

62
03

2.
20

23
.0

02
54

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

with object databases, facilitating complex object queries within
databases using a SQL-like language. This tool provides users
with an interface that enables interactive navigation and content
exploration of GARLIC databases. Similar to SOPView+,
PESTO allows users to traverse the database both forward and
backward. It allows users to query and navigate through objects
presented in a hierarchical manner, with the ability to connect
object nodes via links.

The CORBA Object Browser, described in [10], was
designed to enable direct access to CORBA objects from a web
browser using a URI scheme. It allows users to browse and
invoke CORBA objects in a manner similar to how they
navigate the Internet. Within this tool, users could view and
execute the methods of a specific object directly from a web
browser. However, it is important to note that this functionality
required the use of a prototype browser known as the HotJava
Web Browser, which is no longer available. The key advantage
of the HotJava Web Browser was its capability to access secure
CORBA objects hosted on a secure Object Request Broker
(ORB) via the CORBA Object Browser. Accessing secure
objects through the browser required authentication with the
remote ORB and secure communication.

Apache Axis2, outlined in [11], is a web services engine
developed by the Apache Software Foundation. This engine is
designed for creating interoperable and distributed applications,
implemented in both C++ and Java. Similar to WOX, Apache
Axis2 is an open-source framework that relies on XML and
SOAP for message exchange. Notably, Apache Axis2 operates
with objects; however, it does not retain the state of these
objects, resulting in its methods being invoked in a manner
similar to static methods. An interesting characteristic of this
tool is that it facilitates method execution on objects but lacks of
a user interface. In order to access objects, users must call them
via their respective URLs.

III. WEB OBJECTS IN XML

This section offers a concise overview of the WOX
framework, which merges characteristics of distributed object-
oriented systems and distributed web-based systems. Some of
the key attributes of this framework are introduced.

WOX employs URLs to provide unique identification for
remote objects, aligning with the principles of the
Representation State Transfer (REST) architecture [14]. This is
a significant aspect because it means that all objects can be
uniquely identified by their URL, allowing access from any
location on the web, whether through a web browser or via
programming.

WOX relies on an effective serialization tool known as the
WOX serializer [2]. This serializer is the foundation of the
framework, handling the serialization of objects, requests, and
responses in client-server interactions. The WOX serializer is a
standalone library that uses XML and has the capability to
serialize objects from Java, C#, PHP, and Python into XML and
vice versa. A notable feature of this serializer is its ability to
generate standardized XML representations for objects, which
are language-independent. This characteristic facilitates
interoperability among various object-oriented programming

languages, allowing applications written in these languages to
work together seamlessly.

WOX features a collection of standard and unique operations
used for interacting with both local and remote objects. These
operations encompass actions such as requesting remote
references, making calls to static methods (web service calls),
invoking instance methods, object destruction, requesting
copies, object duplication, updating and uploading objects, and
invoking asynchronous methods, among other functions.
Further details about some of these operations can be found in
[1]. The mechanism used by WOX in a method invocation is
explained as a series of steps:

Step 1. The WOX client program initiates the method
invocation on a remote reference, much like invoking a method
on a local object.

Step 2. The WOX dynamic proxy takes the request, converts
it into XML format, and transmits it over the network to the
WOX server.

Step 3. The WOX server receives the request and converts it
back into a WOX object from XML.

Step 4. The WOX server loads the object and executes the
method on it.

Step 5. The outcome of the method execution is returned to
the WOX server.

Step 6. The WOX server transforms the result into XML,
which is then sent back to the client, either as the actual result or
as a reference.

Step 7. The WOX dynamic proxy at the client end receives
the result and converts it into the appropriate object (real object
or remote reference).

Step 8. The WOX dynamic proxy returns the result to the
WOX client program.

From the perspective of the WOX client program, it merely
initiates the method invocation and receives the result without
being aware of the underlying process. The WOX client libraries
handle the steps involving serialization of the request,
transmission to the WOX server, reception of the method
invocation result, and deserialization. The following sections
will introduce the web system that facilitates the visualization
and execution of methods on WOX objects via a web browser.

IV. ANALYSIS AND DESIGN

This section describes the actions that can be carried out by
the developed web system, and shows some of the interface
prototypes to visualize and execute methods.

A. Actions

The actions that can be carried out by the web system are
described in the following paragraphs.

A1) Access to a specific WOX object over the network. The
web system provides users with a unique URL for each object,
which the system generates. Using this URL, users can directly

1542

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

reach the desired object without the need to navigate through
the repository and search among all the objects stored in the
same repository.

A2) Visualization of objects graphically. Users are allowed
to view the attributes of a specific WOX object through an
interface. There are two available viewing options: a) tabular
view that presents the object in a table format, displaying all of
its attributes, irrespective of their data type; b) a view that
presents the object's XML code, which is formatted in a way
that enables users to comprehend each XML tag.

A3) Storage of WOX objects on the server. This
functionality allows users to upload WOX objects to the server,
facilitating their later use as parameters for invoking objects or
for straightforward storage in the repository.

A4) Visualization of methods of any WOX object. Users
have the ability to inspect the methods associated with any
WOX object, without concern for the parameters necessary for
invoking each method. Each method is accompanied by a
designated area where the response it generates upon invocation
is displayed.

A5) Execution of any method belonging to the class of a
WOX object. Users have the capability to execute methods on
WOX objects, with a parameter validation mechanism in place
to prevent the entry of incorrect parameter values. This ensures
that method invocations are accurate. Additionally, the system
can provide a response from the method invocation, regardless
of its data type. It's worth noting that for the web system to
execute a method on an object, it must possess the class to
which that object belongs.

It should be noted that actions A1, A2 and A3, which have
to do with access, visualization and storage of WOX objects,
are covered in more detail in [12]; while actions A4 and A5,
which have to do with visualization and execution of methods
on WOX objects, are discussed in the following sections.

B. Interface prototypes
Figure 1 illustrates the interface prototype for the list of

objects stored in the server's repository, which includes the
following fields: object URL, which is a unique URL for direct
access to a specific object within the repository; name, which
displays the name of the XML file representing the WOX object;
reference, which indicates the class to which each object is
associated; actions, which offers two choices to users, the first
option allows users to visually explore the object's attributes,
while the second option allows to visualize and access the
methods of an object.

Figure 2 shows the interface prototype for a method
invocation; it shows the object id, the class name of the object,
the name of the method to be invoked on that object, the
parameters of that specific method with input boxes to enter the

values, a button to execute the method, and an area to show the
results of the method invocation.

Fig. 1. Interface prototype for the list of objects stored in the repository.

Fig. 2. Interface prototype for a method invocation.

V. WEB SYSTEM IN OPERATION

This section presents the web system in operation. It
describes how objects are visualized through the repository, how
to visualize methods of an object, and how to execute methods
on a particular WOX object.

A. Visualization of a WOX object
Figure 3 shows the operation of the web system to visualize

a WOX object, through a series of steps that are carried out
between client and server.

Fig. 3. Visualization of a WOX object.

1543

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

Step 1. The user access the repository of objects, where
every object is displayed with its URL, name, reference and
actions (view object and view methods).

Step 2. The user selects the view object link from the actions
for a specific object. The user can also acess the object directly
with the URL that represents it.

Step 3. The system receives the id of the object, and proceeds
to search for it in the repository. In order to do this, the
WOXRP.xml object is deserialized and the location of the file
containing the requested object (if it existed) is accessed.

Step 4. Once the location and name of the file have been
obtained, the file is analyzed with the viewObjectBYXML
method, which is responsible for creating an HTML table that
will represent the graphical display of the WOX object, adding
the id of the object, the class to which it belongs and the
attributes it contains. Finally, it returns all the HTML code
generated and displays it to the user.

B. Visualization of the methods of a WOX object
Figure 4 shows the operation of the system for visualizing

all the methods of a WOX object, through a series of steps that
are carried out between client and server.

Fig. 4. Visualization of the methods of a WOX object.

Step 1. The user access the repository of objects, where
every object is displayed with its URL, name, reference and
actions (view object and view methods).

Step 2. The user selects the view methods link from the
actions for a specific object.

Step 3. The system receives a request, which contains the id
of an object to be manipulated, it proceeds to search for it in the
object repository.

Step 4. If the object is found, the system obtains the class of
the object and from the class, the system recovers all the
methods and parameters necessary to invoke each method. In
order to do this, the object uses Java Reflection technology.

Step 5. A table is created for each method (once all the
methods and parameters of a specific class have been obtained),
which will contain the following attributes: method name, type
of response that it returns when the method is invoked (object,
int, float, etc.), button to invoke the method, text field in which
the response will be displayed.

Step 6. The system adds a form (once the table that
represents each method has been generated), in which the user
can provide the parameters required to invoke the method.

Step 7. Once all the method tables belonging to the class of
an object have been created with their respective forms to be
invoked, they are returned to the user.

C. Invocation of a method on a WOX object
Figure 5 shows the operation of the system for invoking a

method on a particular WOX object, through a series of steps
that are carried out between client and server.

Fig. 5. Invocation of a method on a WOX object.

Step 1. The user receives the tables that represent the
invocation of methods on a particular object.

Step 2. The user proceeds to fill out the form (parameter
entry) to be able to invoke a certain method.

Step 3. During the filling out of the form, with the help of
JavaScript, it is verified that the parameters entered by the user
are correct. If an integer type number is required in the form for
the method, it will be verified that the user really enters an
integer, and not a decimal or text.

Step 4. After the user has entered the correct parameters to
invoke a certain method, they can proceed to press the test
method button, and with the help of an asynchronous JavaScript
call (AJAX), the response is displayed just below the table that
represents the method to be executed. Without having to access
another tab or refresh the browser page, AJAX sends a request
to the server and sends all the parameters entered by the user for
the invocation of a certain method.

Step 5. The system receives the AJAX request with the
following information: id of the object that contains the method
to be invoked, name of the method to be invoked, list of
parameters required to invoke the method, list of classes to
which each parameter belongs. An example of the information
that the server receives to invoke a method is the following:

- id: 3294242

- method name: “addBook”

- parameter list: 1, “book name”, “author”, “publisher”, true

- list of classes: int, String, String, String, boolean

1544

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

Step 6. Once the information is obtained, the system locates
the object according to the id provided, it is deserialized and the
list of parameters is verified (the system verifies that each
parameter matches the class).

Step 7. The system executes the requested method (once the
list of parameters has been created and verified). In order to
proceed with the method invocation, a new object called answer
is created, which will store the result of the method execution.

Step 8. The system proceeds to verify the answer object
(once the requested method has been invoked), for which it
obtains its class. If the answer is a primitive object (int, float
char, string, etc.) the result can be displayed on the screen as
text. On the other hand, if the answer is a non-primitive object,
it is serialized with WOXSerializer.

Step 9. The user is shown a link to view the object that will
be the response to the invocation of the requested method.

D. Web system interface
In order to visualize the methods of an object, it is necessary

that the object class is hosted on a WOX server. If this is the
case, by pressing the View methods button the server will show
the user all the methods of the object, with their corresponding
fields to be invoked, as it is shown in Figure 6, which illustrates
the addBook method of the library class.

Fig. 6. Interface to visualize the methods of a library object.

Figure 7 shows the addBook method, which will add a book
to a library object, with the following values for its parameters:

- Book ID: 121211

- Name: LOST OCEAN

- Author: JOHANA BASFORD

- Editorial: CULTURAL DEVELOPMENTS

- Status: Available

The bottom panel shown in Figure 7 illustrates the results of
the method invocation, the book has been added to the library
object with the values specified. The results panel shows that the
data type for the first parameter is int, and the data types for the
rest of the parameters are string. There is also a message
indicating that the book has been added correctly.

Fig. 7. Interface to invoke the addBook method on a library object.

Figure 8 shows the addBook method, which will add another
book to the library object, with the following values for its
parameters:

- Book ID: 121234

- Name: MEXICO DECEIVED

- Author: FRANCISCO MARTÍN MORENO

- Publisher: Planeta

- Status: Available

The bottom panel shown in Figure 8 illustrates the results of
the method invocation, the book has also been added to the
library object with the values specified.

Fig. 8. Interface to invoke again the addBook method on a library object.

After adding two books to the library object through its
methods, it can be displayed, as shown in Figure 9. It can be
observed that the object has changed, it now contains the two
books that were added previously.

1545

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Interface to visualize the library object with the two books added.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a web system that allows users to
visualize and execute methods on distributed objects. The
invocation of methods is carried out through a web interface,
where the values for each of the parameters are provided. The
web system developed is a complement of Web Objects in XML
(WOX), which is a framework for programming distributed
object-based applications.

The web system met the objectives set at the beginning of its
development, since it was possible to successfully design and
implement the visualization and invocation of methods on
objects through a web browser. It should be noted that it is also
possible to store objects in a repository, where they can be
visualized, both graphically and in its XML representation.

REFERENCES
[1] C. R. Jaimez-González, S. M. Lucas, “Implementing a State-Based

Application Using Web Objects in XML”, in: Meersman R., Tari Z. (eds)
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer

Science, vol. 4803, pp. 577-594, 2007, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-76848-7_40

[2] C. R. Jaimez-González, S. M. Lucas, E. López-Ornelas, “Easy XML
Serialization of C# and Java Objects”, Balisage: The Markup Conference
2011, Montréal, Canada, August 2011, in Proceedings of Balisage: The
Markup Conference 2011, Balisage Series on Markup Technologies, vol.
7. https://doi.org/10.4242/BalisageVol7.Jaimez01

[3] C. R. Jaimez-González, W. A. Luna-Ramírez, S. M. Lucas, “A Web Tool
for Monitoring HTTP Asynchronous Method Invocations”, in
Proceedings of the IEEE International Conference for Internet
Technology and Secured Transactions, pp. 127-132, London, December
2012, https://ieeexplore.ieee.org/document/6470883

[4] C. R. Jaimez-González, S. M. Lucas, “Web Objects in XML (WOX):
Efficient and easy XML serialization of Java and C# objects”,
http://woxserializer.sourceforge.net/

[5] C. R. Jaimez-González, A. Rodríguez, “Web Objects in XML (PyWOX):
Object to XML Serializer in the Python programming language”,
https://pywoxserializer.sourceforge.net/

[6] C. R. Jaimez-González, L. Hernández, “Web Objects in XML
(PHPWOX): Object to XML Serializer in the PHP programming
language”, http://phpwoxserializer.sourceforge.net/

[7] P. Merle, C. Gransart, J. Geib, “CorbaWeb: A Generic Object Navigator”,
http://www.lifl.fr/~merle/papers/96_WWW5/paper/Overview.html

[8] S. Chang, H. Kim, “SOPView+: An Object Browser Which Supports
Navigating Database by Changing Base Object”, in Proceedings of the
21st International Conference on Computer Software and Applications
Conference (COMPSAC 97), 1997.

[9] M. Carey, L. Haas, V. Maganty, J. Williams, “PESTO: An Integrated
Query/Browser for Object Databases”, in Proceedings of the 22th
International Conference on Very Large Data Bases, Mumbai, India,
1996, https://dl.acm.org/doi/10.5555/645922.673633

[10] G. Kumar, P. Jalote, “A Browser Front End for CORBA Objects”, in 10th
International World Wide Web Conference, 2001.

[11] Apache Software Foundation. Web Services - Apache Axis.
http://ws.apache.org/axis/

[12] J. M. Hernández-Salinas, C. R. Jaimez-González, B. García-Mendoza,
“Web System for Storing and Visualizing Web Objects in XML”, 2022
International Conference on Computational Science and Computational
Intelligence (CSCI 2022), Las Vegas, NV, USA, 2022, pp. 1914-1919,
doi: 10.1109/CSCI58124.2022.00344

[13] M. Tork, M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J.
Thomas, E. Wimmers, “The Garlic Project”, in Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, New
York, 1996.

[14] R. Fielding, “Architectural Styles and Design of Network-Based Software
Architectures”, PhD thesis, USA, 2000.

1546

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:12:09 UTC from IEEE Xplore. Restrictions apply.

