
Converting WOX Objects to YAML Documents
Vivian P. Reynoso-Sánchez, Betzabet García-Mendoza, Carlos R. Jaimez-González, Wulfrano A. Luna-Ramírez

Departamento de Tecnologías de la Información
Universidad Autónoma Metropolitana, Unidad Cuajimalpa

Mexico City, Mexico
Email: {vivian.reynoso, bgmendoza, cjaimez, wluna}@cua.uam.mx

Abstract—Interoperability refers to the capability of enabling
communication between applications developed in different
programming languages. This communication is achieved by
exchanging data, typically using a standardized format. To solve
the challenge of interoperability, one approach involves the
implementation of serializers that transform objects into standard
formats, which can subsequently be transformed back into any
programming language. This paper introduces a converter as a
solution to tackle the interoperability issue, particularly focusing
on text-based formats. The converter presented in this paper
allows to transform objects written in the XML format generated
by WOX to documents written in the YAML format. The paper
explores object representations in WOX and YAML, and provides
examples of the transformations obtained. A comparative analysis
of some existing tools similar to the developed converter is carried
out and their most relevant features are described.

Keywords—converters, interoperability, programing languages,
text-based formats, WOX objects

I. INTRODUCTION

Serialization refers to the procedure of transforming an
object into a format suitable for storage in various mediums,
including memory, files, databases, or streams, allowing for its
transmission over a network. The main objective of serialization
is to preserve an object's state so that it can be reconstructed at a
later time when needed. The opposite operation, which restores
an object from its serialized form, is known as deserialization.

Several programming languages offer built-in support for
serialization, either as an integral part of the language itself or
via an associated library. This library or software component is
typically referred to as a serializer. In an ideal scenario, the
serialization and deserialization capabilities inherent to
programming languages would suffice for representing the state
of an object that contains data types and fundamental language
structures. However, in some programming languages,
serialization is limited, as it cannot fully capture more intricate
language constructs present in the object's state, such as object
references, collections, enumerations, and similar complexities.

Serialization and deserialization are common procedures
employed in distributed systems and applications that require
data exchange. An example of this situation is transmitting an
object to a remote application via a web service or through a
remote procedure call. Additionally, certain applications
demand the exchange of objects between different programming
languages. In such cases, it becomes imperative to establish a
language-neutral representation of objects, essentially a
standardized format for describing serialized objects.

A programming language-independent representation of
objects is a complex task to achieve, for several reasons: 1)
objects need to be accurately reconstructed, considering both
single and multiple inheritance; 2) complex data structures must
be carefully restored, especially those where an object may be
referenced multiple times by different pointers or references; 3)
collections of objects, such as lists and dictionaries, must be
restored in a suitable manner; 4) the size of numeric data types
must be managed correctly, among other challenges.

When it comes to formats for representing serialized objects,
they can be broadly categorized into two main groups: text-
based formats and binary formats. Examples of widely used
text-based formats for object representation include the
Extensible Markup Language (XML) [1], JavaScript Object
Notation (JSON) [2], and YAML Ain't Markup Language
(YAML) [3]. Binary formats, on the other hand, are more reliant
on their specific implementation and programming language,
making them non-standardized. Text-based formats are
designed for human comprehension, enabling manual inspection
and often simplifying portability across different programming
languages. However, it's worth noting that serializing objects
into text generally requires more time and storage space. In
terms of their practical use, all three mentioned text-based
formats share a common purpose: providing a standardized
means for representing structured data and a mechanism for data
exchange that is independent of the programming language.

Interoperability essentially refers to the capacity for
applications written in distinct programming languages to
communicate with each other. This communication is achieved
by exchanging data, typically in a standardized format.
Resolving interoperability challenges can be accomplished by
creating serializers that transform objects into standard formats,
which can subsequently be deserialized in any programming
language. It's worth mentioning that the third author of this paper
has previously addressed this issue using this approach.

In this paper, a converter is introduced as a solution to
address the interoperability challenge, with a specific emphasis
on text-based formats. The converter presented in this paper
enables the transformation of objects initially written in the
XML format generated by the Web Objects in XML (WOX)
serializer into documents formatted in YAML. The WOX
serializer will be briefly described in Section II.

The rest of the paper is structured as follows. In Section II,
the Web Objects in XML (WOX) framework [4] is introduced,
which is the background of the converter developed; this section
also shows the mechanism employed by WOX, outlines the

1565

2023 International Conference on Computational Science and Computational Intelligence (CSCI)

2769-5654/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCI62032.2023.00258

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

ta
tio

na
l S

ci
en

ce
 a

nd
 C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (C

SC
I)

|
97

9-
8-

35
03

-6
15

1-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
CI

62
03

2.
20

23
.0

02
58

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

serialization and deserialization procedures for objects,
introduces the WOX extensions, and presents research studies
comparing resource usage and performance in applications
utilizing JSON, XML, and YAML for data exchange. Section
III concentrates on describing YAML, detailing its data types
and restrictions. Section IV provides a comparative analysis of
some tools similar to the converter developed. Section V shows
the converter and a series of objects in the XML format, and
their corresponding YAML representation. Finally, Section VI
presents some conclusions and future work.

II. WEB OBJECTS IN XML

The foundation for the converter developed lies in the Web
Objects in XML (WOX) framework [4], which was originally
designed for the management of distributed objects and web
services. WOX has evolved over the years, initially offering
functionality solely for creating and managing remote objects
and web services. Today, it encompasses significant features
relevant to the field of distributed systems, particularly
addressing issues of interoperability between different systems.
It's worth noting that the WOX framework and its components
have been systematically employed to support various courses
within the undergraduate program in Information Technologies
and Systems at our university. In particular, the WOX
framework and its components have been used in the following
courses: Dynamic Web Programming, Systems Integration,
Object-Oriented Programming, and Thematic Laboratories.

WOX operates as a framework that employs the HTTP
protocol to facilitate communication between clients and
servers. It relies on XML as the chosen format for representing
objects and ensures the availability of objects through unique
identifiers (URLs). This design is influenced by the principles
of the Representational State Transfer (REST) architectural style
[5]. This section provides a concise overview of selected
features and capabilities offered by the WOX framework.

The mechanism used by WOX for invoking a method on a
remote object is depicted in Figure 1, and the steps involved are
the following: 1) the client program initiates a method call on a
remote reference, using the same method-calling approach as it
would for a local object; 2) the WOX dynamic proxy intercepts
the request, converts it into XML, and transmits it over the
network to the WOX server where the remote object is situated;
3) upon receipt of the request, the WOX server deserializes it
into a WOX object; 4) the WOX server loads the object into
memory and executes the requested method; 5) the result of the
method execution is sent back to the WOX server; 6) the WOX
server serializes the result into XML, returning either the actual
result or a reference to it to the client program (in case a
reference to the object has been transmitted, the result is stored
on the server); 7) the WOX dynamic proxy receives the result
and deserializes it into the corresponding object, which could be
a real object or a remote reference; 8) finally, the dynamic proxy
delivers the result back to the client program.

The process of converting an object into XML (serialization)
and converting XML into an object (deserialization) is executed
by the WOX serializers [6, 7]. Initially, these serializers were
developed for the Java and C# programming languages.
Consequently, they enable the serialization of Java objects into
XML, the deserialization of XML into C#, and vice versa. These

WOX serializers work as standalone libraries, capable of
generating XML representations of objects in a language-
independant format. They are freely accessible for download
[8]. It's worth mentioning that an article was published in
Microsoft's MSDN magazine [9], discussing interoperability
between Java and .NET applications. In this article, WOX
serializers were employed to exchange objects between their
respective applications; the article highly recommends the use
of WOX for integrating heterogeneous applications.

Fig. 1. WOX mechanism for invoking a method on a remote object.

In order to serialize objects into XML, WOX serializers
employ the following process:

1) The process begins by extracting the name, type, and
value of each object attribute. This is achieved using reflection,
a programming capability that enables the inspection and
potential modification of a program's high-level structure.
Through reflection, it becomes possible to access an object's
information, including the execution of its public attributes and
methods, all during runtime. Additionally, introspection is
utilized to determine the data type of an object attribute.

2) Once the name and value of each attribute within the
object intended for serialization are acquired, they are then
written into an XML document. If the value is not a primitive
type but instead another object, all attributes of this subordinate
object must also be represented within the XML document.

The code snippet displayed in Figure 2 illustrates the XML
representation of an object belonging to the Product class after
undergoing serialization with a WOX serializer. At the root of
the XML document lies an object element, annotated with a type
attribute set to "Product", indicating the class to which the object
belongs. The id attribute serves the purpose of managing
references to objects, though in this specific instance, only one
object is involved. Each attribute within the object is depicted
through field elements, each equipped with the following
attributes: name (reflecting the attribute name in the class), type
(indicating the WOX data type of the attribute), and value (the
attribute's value for that specific object). In WOX, primitive
types are presented as field elements. The serialization rules of
WOX serializers, along with several examples of serialized
objects, are explained in [7] and [8].

Fig. 2. XML representation of object belonging to a Product class.

1566

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

The deserialization process is the inverse of serialization. It
unfolds in the following sequence of steps: 1) information
pertaining to the object contained within the XML document is
extracted; 2) a class is created with the information extracted
from the XML document; 3) in the relevant programming
language, an object is instantiated, utilizing the information
extracted from the XML document and the class generated in
step 2. The WOX serializers [7] execute this process.

The WOX framework had an expansion through the addition
of asynchronous communication capabilities [10], which are
employed for processes that demand a significant amount of
time to be completed on the server. With asynchronous
communication, a client program can persist in its operations
without becoming blocked, even while the server-side process is
in progress. Once the process concludes its execution, the client
can then access the process result. Within this context, WOX
serializers continue to play a crucial role, as they handle the
serialization (storage) and subsequent deserialization of these
results. Furthermore, an asynchronous methods monitor [11]
was conceived and developed to empower client programs to
oversee the ongoing processes on the server. This monitoring
tool can be accessed from a client program or via a web browser.

To further advance the research outlined thus far, a research
project on interoperability in object-oriented programming
languages was carried out, which led to the ability to inspect and
navigate objects via a web browser [12]. This capability was
made possible because WOX objects are stored on the server
through their unique URLs. With these tools, it is posible to
visualize the XML document representing a specific object or a
portion thereof by navigating the object using XPath expressions
[13]. Similarly, the web browser interface permits the display
and execution of methods associated with an object stored on a
WOX server [14]. Additionally, two serializers and deserializers
were conceived and implemented in the Python [15] and PHP
[16] programming languages. Furthermore, two websites were
constructed to provide information and examples of their usage;
these resources are also available for free download [17, 18].

The research work discussed so far provides the foundation
for the XML to YAML converter outlined in this paper.
Additionally, numerous studies emphasize the significance of
data exchange between applications written in diverse
programming languages, running on various devices and
platforms. This underscores the importance of representing
objects or data in a standardized format like JSON, XML, or
YAML to ensure consistent communication across different
applications and devices. Currently, these text-based formats,
namely JSON, XML, and YAML, are among the most
commonly employed formats for data exchange.

Studies conducted in [19, 20, 21] have compared the
resource usage and performance of applications that employ
JSON, XML, and YAML for data exchange. These studies have
found that JSON and YAML formats consume less memory
than XML when representing objects, and they also have faster
object serialization times compared to XML. Additionally, [22]
explores object serialization in both XML and JSON using
different libraries. It involves serializing a sample object with
these libraries and measuring the resulting file size and
serialization time. The conclusion is that no single solution is

definitively better than the others, as each library is suitable
within its intended context. Moreover, both JSON and XML
offer interoperability across different programming languages.
[23] provides a review of the process of serializing objects into
JSON format and vice versa. It emphasizes that the JSON format
is more efficient than the XML format due to its smaller file size
and quicker serialization process.

The research discussed in [24] focuses on analyzing XML
and JSON within the context of decision-making computational
systems. The study concludes that both technologies come with
their own set of advantages and disadvantages. It suggests that
for applications using simple data structures, JSON is a more
suitable choice than XML. However, for applications with
complex structures, XML is the preferred option. In comparative
studies conducted in [25, 26], the results consistently show that
JSON and YAML formats outperform XML in terms of size and
serialization time. Nevertheless, it's worth noting that in certain
applications requiring the transmission of intricate data
structures, XML proves to be more effective for representing
data that cannot be adequately conveyed using JSON or YAML.
Furthermore, as part of the future research direction, the
development of converters between XML and JSON, XML and
YAML, JSON and YAML, and vice versa, is proposed.

The following sections concentrate in the WOX (XML) to
YAML converter. In particular, the YAML language with its
different data types, a comparative analysis of tools similar to
the XML to YAML converter, and the representation of XML
objects with their corresponding YAML documents.

III. YAML AND DATA TYPES

YAML is a data serialization language, which is human-
readable and easy to understand. It can also be used in
conjunction with other programming languages and is often
used to write configuration files [3]. YAML is often correlated
with XML, but YAML is not a markup language, it is an
interoperable, flexible and object-oriented language. On the
other hand, XML is an extensible markup language that was
designed to be backward compatible with the Standard
Generalized Markup Language (SGML), therefore it had many
design restrictions that YAML does not have; for example,
XML is designed to support structured documentation, YAML
is more focused on data structures and messaging [1].

YAML supports various data types such as arrays,
dictionaries, lists and scalars; the format of YAML is case
sensitive and space sensitive. YAML files have the .yml
extension. Additionally, the following notation --- is used to
indicate the start of a YAML file. The data mapping syntax
consists of a key followed by its value (key: value); it is very
important to take the space into account since it is recognized.
YAML can recognize some data types such as strings,
characters, integers, floats, booleans, arrays, and lists that are
constructed from primitive data types. Some examples of data
mapping in YAML are shown in the following paragraphs.

In YAML it is possible to store primitive data types such as
int, float, string, boolean and NULL. Figure 3 shows the
representation of these types of data: the first attribute or key is
name, which is a string and must be enclosed in single or double
quotes; age value is an int data type; height is a float data type;

1567

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

married is a boolean data type with two posible values (true or
false); and children has the NULL value.

Fig. 3. YAML representation of primitive data types.

Multiline and single-line strings are also possible in YAML.
The “>” symbol allows to write a single-line string on multiple
lines. The string is simply a long string, which is divided into
several lines. With this notation the interior line breaks are
eliminated. Figure 4 shows an example. It should be noted that
another way to write in block is using the “|” symbol instead of
the “>” symbol; which will also allow to have multiple line
strings, but line breaks are preserved.

Fig. 4. YAML representation of single-line and multiline strings.

A list in YAML is a sequence of objects, it is an ordered
collection of values. These values are not associated with a key,
but with a positional index obtained from the order in which they
are specified in the list. Figure 5 illustrates the way in which the
lists are represented in YAML. A list can contain any number of
elements, each element in the list is indented by a number of
spaces and is preceded by the “-” symbol.

Fig. 5. YAML representation of a list.

YAML represents an array as a group of values arranged in
sequence. Figure 6 shows an example of an array of four
elements: element1, element2, element3 and element4. The array
can also be represented as shown in Figure 7.

Fig. 6. YAML representation of an array.

Fig. 7. Another YAML representation of an array.

Objects in YAML are represented as a group of key-value
pairs. Figure 8 shows some valid expresions of key: value pairs.

Fig. 8. YAML representation of some key-value pairs.

Data types represent a problem when talking about
interoperability between various programming languages. There
must be an agreed upon mapping for each data type in a certain
programming language. A mapping table is required, which
contains the data types accepted by YAML and WOX. The first
and second columns of Table 1 show the data mapping from
WOX to YAML, and the third and fourth columns of Table 1
show the data mapping from YAML to WOX.

TABLE I. DATA MAPPING BETWEEN WOX AND YAML

WOX YAML YAML WOX

byte int int int

short int float float

int int string string

long int boolean boolean

float float list list

double - map map

char string array array

boolean boolean

string string

object -

array array

list list

map map

class -

It should be noted that there are some data types that exist in
WOX, but does not exist in YAML. In particular, the byte, short
and long data types do not exist in YAML, but the int data type
could be used, which is an equivalent; the char data type does
not exist in YAML, but the string data type could be used, which
is an equivalent; the array data type in YAML is a sequence, it
is represented as a list; the map data type in YAML is
represented with key-value pairs.

IV. EXISTING TOOLS TO CONVERT XML TO YAML

This section describes the functionality and features of five
different existing tools that are similar to the converter
developed. At the end of the section there is a comparison table
with relevant features of the tools analyzed.

Online YAML Tools [27] is a website that contains a XML to
YAML converter. In order to use the converter the user enters

1568

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

the XML in the input box positioned on the left and then the
YAML will be obtained in the output box on the right. There is
also the option to upload a XML document and download the
YAML document that is generated. The website also contains
examples of XML and YAML conversion, and it has an option
to control the indentation desired for the YAML output.

JSON Formatter [28] is a website that helps to convert XML
data to YAML. In order to convert the data the user has to write
the XML in the left box and the YAML is automatically
generated. It is also possible to upload a file to the website and
obtain the corresponding YAML. In addition, an option is
included to validate the XML entered, it is possible to download
or print the YAML that is obtained. The wesbsite includes some
examples of XML documents to convert them to YAML.

DocConverter [29] is a Java library that allows converting
XML, JSON, CSV and YAML formats. This library contains
the DocConverter class that can be called statically; this class
has different methods. In order to use the XML to YAML format
converter, it is needed to add the dependency to Maven and
import the class. The convertXmlToYaml(String xml) method
converts from XML to YAML, it receives a string as a
parameter, which will contain the XML to be converted. In order
to save the generated YAML the convertStringToFile(String
path, String content) method is used, this method receives two
parameters: the path where the YAML file will be saved and the
string that contains the XML to be converted.

Browserling [30] is a website that hosts a simple XML to
YAML converter, all the user needs to do is to type or paste the
XML into the text field and press the button to get the YAML
generated. The website has an input text box to write the XML
text that will be converted to the YAML format; there are two
buttons, one to convert from the XML format to the YAML
format, and the other to copy the text to the clipboard.

Xmlplain [31] is a module in the Python programming
language that converts XML to YAML and viceversa; it only
allows to convert simple data types such as lists, dictionaries and
strings. This module can be used by importing it in Python, in
order to convert the data from XML to YAML. The XML file is
read and there is a function that return YAML; it is also possible
to write the generated YAML to a file.

Table 2 shows a comparison of the tools analyzed in this
section: T1) Online YAML Tools, T2) JSON Formatter, T3)
DocConverter, T4) Browserling, and T5) Xmlplain. A tick
indicates that the tool has the feature, while a cross indicates that
the tool does not have it. The features considered for the
comparison are explained in the following paragraph.

The web application feature indicates that the tool can be
accessed through a web browser; the interoperability feature
refers to the ability of the tool to exchange information, whether
data, documents or objects between different programming
languages; the YAML saving feature refers to whether the tool
has the ability to save the generated YAML; the validate XML
feature indicates that the tool is able to check that a document in
XML format is well formed and conforms to a specific structure;
the examples feature means that the tool has examples about
XML and YAML; the upload file feature refers to whether the

user can select a document hosted on the computer to be
uploaded to the tool; the input text feature refers to the existence
of a box that allows the user to enter or paste text; the structured
YAML feature means that the elements of a YAML document
must follow a structure and have an indentation.

TABLE II. COMPARISON OF FEATURES OF THE ANALYZED TOOLS

Features T1 T2 T3 T4 T5
Web application

� � � � �

Interoperability

� � � � �

Save YAML

� � � � �

Validate XML

� � � � �

Examples

� � � � �

Upload file

� � � � �

Input text

� � � � �

Structured YAML

� � � � �

V. OPERATION OF THE WOX TO YAML CONVERTER

After analyzing the different tools and their features shown
in the comparison table, and analyzing the data types supported
by WOX and YAML through the mapping table presented in a
previous section, a web application was designed and
developed, which contains a converter of objects from the WOX
format (which is a specific XML format) to the YAML format.
This converter makes it possible to achieve interoperability
between applications that use WOX as the format to exchange
data and applications that use YAML format.

The web application developed has all the features described
in Table 2: it is a web application, the converter allows
interoperability between WOX and YAML, it allows to save the
YAML document in a file, it validates the XML input, it will
contain several examples to convert different types of WOX
objects to YAML documents, it is possible to upload XML files
to the web application, it has an input text to write the WOX
object, and it generates a structured YAML.

Figure 9 shows a screenshot of the web application
developed, which has two input boxes: the left input box is to
write the WOX object to be converted, while the right input box
is to display the conversion to a YAML document. The interface
shows three buttons: the Load file button is to allow the user to
open a WOX file and load it to the left input box; the WOX to
YAML button is to execute the conversion from the WOX format
to the YAML format; and the Download YAML button is to
dowload the resulting YAML as a document.

It should be noted that in Figure 9 the WOX object written
in the left input box is an object of the Course class, which
contains three attributes: code with a value of 6756, name with
a value of “XML Tech”, and term with a value of 3; the data
types of these attributes are int, string and int, respectively. The
YAML document shown in the right input box is the result of
the conversion, and it represents the WOX object in YAML.

1569

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. The web application developed with the WOX to YAML converter.

Figure 10 shows another XML document that represents an
array of two Product objects in WOX format. Every Product
object has five attributes: name, price, grams, registered and
category. The WOX data types of the attributes are as follows:
string, double, int, boolean and char.

Fig. 10. An array of Product objects in WOX format.

Figure 11 shows the result of converting the WOX object to
YAML using the web application developed. The YAML
document generated contains the array of Product objects.

Fig. 11. YAML document after converting the WOX object.

1570

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS

This paper introduced a WOX to YAML converter, which
allows to translate objects written in the XML generated by
WOX to YAML documents, allowing interoperability between
applications that use WOX and applications that use YAML to
exchange data. The converter presented in this paper resides in
a web application that was implemented specifically for this
purpose, its functionality allows to save the YAML documents
generated in files, it validates the XML input, it is possible to
upload XML files to the web application, it has an input text to
write the WOX object, and it generates a structured YAML.

This paper also provided an analysis of five existing tools
that translate XML to YAML, and described some of their
relevant features. The converter presented in this paper
translates XML to YAML, taking into consideration the existing
data types in WOX and YAML in order to maintain the
interoperability between these two text-based formats. The
paper also gave an overview of the WOX framework, with its
functionality and the tools that have been developed to extend it.

Further work is needed to complete a web site with
documentation and examples to convert a variety of WOX
objects to YAML documents. It is also planned to put the web
application in a server in order to be available for users. There is
also ongoing work to develop a WOX to JSON converter [32].

REFERENCES

[1] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, “The
Extensible Markup Language (XML) 1.0”, 2013, available at:
https://www.w3.org/TR/xml/

[2] Introducing JSON. http://www.json.org/

[3] YAML Ain’t Markup Language (YAML) Version 1.2. (2021).
https://yaml.org/spec/1.2/

[4] C. R. Jaimez-González, S. M. Lucas, “Implementing a State-Based
Application Using Web Objects in XML”, in: Meersman R., Tari Z. (eds)
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer
Science, vol. 4803, pp. 577-594, 2007, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-76848-7_40

[5] R. Fielding, “Architectural Styles and Design of Network-Based Software
Architectures”, PhD thesis, USA, 2000.

[6] C. R. Jaimez-González, S. M. Lucas, “Interoperability of Java and C#
with Web Objects in XML”, in Proceedings of the International
Conference e-Society (ES 2011), pp. 518-522, Avila, Spain, March 2011.

[7] C. R. Jaimez-González, S. M. Lucas, E. López-Ornelas, “Easy XML
Serialization of C# and Java Objects”, Balisage: The Markup Conference
2011, Montréal, Canada, August 2011, in Proceedings of Balisage: The
Markup Conference 2011, Balisage Series on Markup Technologies, vol.
7. https://doi.org/10.4242/BalisageVol7.Jaimez01

[8] C. R. Jaimez-González, S. M. Lucas, “Web Objects in XML (WOX):
Efficient and easy XML serialization of Java and C# objects”,
http://woxserializer.sourceforge.net/

[9] I. Khan, “Interoperability: Runtime Data Sharing Through an Enterprise
Distributed Cache”, MSDN Magazine, vol. 25, No. 10, October 2010,
http://msdn.microsoft.com/en-us/magazine/gg232763.aspx

[10] C. R. Jaimez-González, S. M. Lucas, “Asynchronous Method Invocations
Using HTTP Polling and HTTP Streaming”, in Proceedings of the
International Conference on Applied Computing 2011 (AC 2011), pp.
536-540, Rio de Janeiro, Brazil, November 2011.

[11] C. R. Jaimez-González, W. A. Luna-Ramírez, S. M. Lucas, “A Web Tool
for Monitoring HTTP Asynchronous Method Invocations”, in
Proceedings of the IEEE International Conference for Internet
Technology and Secured Transactions, pp. 127-132, London, December
2012, https://ieeexplore.ieee.org/document/6470883

[12] C. R. Jaimez-González, “A Simple Web Interface for Inspecting,
Navigating, and Invoking Methods on Java and C# Objects”, Research in
Computing Science: Advances in Computing Science, vol. 81, pp. 133-
142, 2014, https://www.rcs.cic.ipn.mx/2014_81/RCS_81_2014.pdf

[13] J. Robie, D. Chamberlin, M. Dyck, J. Snelson, “XML Path Language
(XPath)”, W3C Recommendation, 2014.

[14] J. M. Hernández-Salinas, C. R., Jaimez-González, “Herramienta Web
para Almacenar y Visualizar Objetos Distribuidos”, Research in
Computing Science, vol. 125, pp. 63-74, 2016.

[15] A. I. Rodríguez-Martínez, C. R. Jaimez-González, “Serializador de
Objetos a XML en el Lenguaje de Programación Python”, Avances de
Ingeniería Electrónica 2013, pp. 444-451, 2013.

[16] L. Hernández-Piña, C. R. Jaimez-González, “Serialización de Objetos
PHP a XML”, Research in Computing Science, vol. 125, pp. 87-95, 2016.

[17] C. R. Jaimez-González, A. I, Rodríguez-Martínez, “Web Objects in XML
in Python (PyWOX): Serializador de Objetos a XML en el lenguaje de
programación Python”, 2014, http://pywoxserializer.sourceforge.net/

[18] C. R. Jaimez-González, L. Hernández-Piña, “Web Objects in XML - PHP
(PHPWOX): Serialización XML de objetos en PHP y viceversa”, 2014,
http://phpwoxserializer.sourceforge.net/

[19] N. Nurseitov, M. Paulson, R. Reynolds, C. Izurieta, “Comparison of
JSON and XML Data Interchange Formats: A Case Study”, in
Proceedings of the 22nd International Conference on Computer
Applications in Industry and Engineering (CAINE 2009), November
2009, San Francisco, California, USA.

[20] M. Ericksson, V. Hallberg, “Comparison between JSON and YAML for
data serialization”, BSc Thesis, Sweden, 2011.

[21] G. Goyal, K. Singh, K. Ramkumar, “A detailed analysis of data
consistency concepts in data exchange formats (JSON & XML)”, in
Proceedings of the International Conference on Computing,
Communication and Automation (ICCCA), May 2017,
https://doi.org/10.1109/CCAA.2017.8229774

[22] K. Maeda, “Performance evaluation of object serialization libraries in
XML, JSON and binary formats”, in Proceedings of the Second
International Conference on Digital Information and Communication
Technology and its Applications (DICTAP), May 2012, Bangkok,
Thailand, https://ieeexplore.ieee.org/document/6215346

[23] J. Mora-Castillo, “Serialización/deserialización de objetos y transmisión
de datos con JSON: una revisión de la literatura”, Tecnología en Marcha,
vol. 29, No. 1, pp. 118-125, 2015, https://doi.org/10.18845/tm.v29i1.2544

[24] Z. Haq, G. Khan, T. Hussain, “A Comprehensive analysis of XML and
JSON web technologies”, New Developments in Circuits, Systems,
Signal Processing, Communications and Computers. pp. 102-109, 2015.

[25] A. Breje, R. Gyorodi, C. Gyorodi, D. Zmaranda, G. Pecherle,
“Comparative Study of Data Sending Methods for XML and JSON
Models”, International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 9, No. 12, pp. 198-204, 2018,
https://doi.org/10.14569/IJACSA.2018.091229

[26] K. Grochowski, M. Breiter, R. Nowak, “Serialization in Object-Oriented
Programming Languages”, Introduction to Data Science and Machine
Learning, IntechOpen, pp. 1-18, 2019,
http://dx.doi.org/10.5772/intechopen.86917

[27] YAML to XML Converter. World’s simplest YAML tool. Online YAML
Tools. https://onlineyamltools.com/convert-yaml-to-xml

[28] Best YAML to XML Converter Online. Json Formatter.
https://jsonformatter.org/yaml-to-xml

[29] GitHub - assimbly/docconverter: Java library to convert between XML,
CSV, JSON and YAML documents. GitHub.
https://github.com/assimbly/docconverter

[30] YAML to XML Converter - Transform YAML to XML. Browserling.
https://www.browserling.com/tools/yaml-to-xml

[31] XMLplain. (2018). PyPI. https://pypi.org/project/xmlplain/

[32] C. R. Jaimez-González and B. García-Mendoza, "Towards the
Development of Text-Based Format Converters for Object
Representation," 2022 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA,
2022, pp. 1879-1883, https://ieeexplore.ieee.org/document/10216513

1571

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 21:57:45 UTC from IEEE Xplore. Restrictions apply.

