2022 International Conference on Computational Science and Computational Intelligence (CSCI)

Web System for Storing and Visualizing
Web Objects in XML

José M. Hernandez-Salinas, Carlos R. Jaimez-Gonzalez, Betzabet Garcia-Mendoza
Departamento de Tecnologias de la Informacion
Universidad Autonoma Metropolitana, Unidad Cuajimalpa
Mexico City, Mexico
Email: {cjaimez, bgmendoza}@cua.uam.mx

Abstract—Web Objects in XML (WOX) is a framework for
creating object-based distributed applications, it supports the
interoperability among different object-oriented programming
languages, it uses XML as the format representation for objects,
and it uses HTTP as its transport protocol. This paper presents a
web system that was developed to complement the functionality of
WOX, which allows the storage of distributed objects and the
visualization of their state and methods. The web system has a
repository, in which objects can be visualized and their methods
can be executed through a web interface where the user can
provide values for each of their parameters.

Keywords—Web Objects in XML; visualization of objects,
distributed objects, object storage

I. INTRODUCTION

The web system presented in this paper complements the
Web Objects in XML (WOX) framework [1], which is used to
create distributed object-based applications. WOX allows
building distributed systems, it uses XML as a representation for
the objects and messages exchanged [2], and it provides
synchronous and asynchronous communication between clients
and servers [3]. WOX has special features taken from two
paradigms used to build distributed systems: the object-based
paradigm and the web-based paradigm. WOX can store Java,
C#, Python and PHP objects, which can be generated by local or
distributed applications.

The rest of the paper is organized as follows. Related work
is presented in section 2 with a comparative analysis of different
systems that have a similar purpose to the web system described
in this paper. Section 3 provides an introduction to the WOX
framework. Section 4 describes the functionality of the web
system, its structure and interface. Section 5 shows the web
system in operation, in particular the storage of objects and the
repository for visualizing objects are presented. Finally, section
6 presents the conclusions and future work.

II. RELATED WORK

This section describes the features and operation of some
systems that are similar to the web system presented in this
paper. The systems analyzed are the following: CORBAWeb
[4], SopView+ [5], PESTO [6], CORBA Object Browser [7] and
Apache Axis2 [8]. A comparison of these systems is presented
at the end of the section, together with a brief description of the
features that were taken into consideration.

A. CORBAWeb

It is a system [4] that acts as a gateway between the web and
the Common Object Request Broker Architecture (CORBA).
This system is known as a generic object browser, since its idea
is to allow clients to view and invoke methods on any local or
remote CORBA object, through a web browser. With this
system a client can navigate through CORBA object links using
dynamically generated URLs for each remote object.

CORBAWeb works through a web browser, in which a user
can access and invoke methods on remote objects that reside in
a server, for this, HTML forms are automatically generated from
the Interface Definition Language (IDL), which allows the
invocation of methods of any CORBA object. CORBAWeb
receives the user's actions and translates them, accesses the
remote object required to invoke the object's method, gets the
result, and finally returns an HTML document containing the
results of the invocation.

B. SOPView+

It is a project [5] of the Seoul National University, South
Korea, developed in a UNIX environment, it uses the Motif
widget tool to provide a graphical interface. This project aims to
create an object browser and viewer, mainly for querying and
managing object-oriented databases. With this system it is
possible to explore the database in order to locate a desired
object, retrieve its information and view it graphically. In
addition, this tool visualizes the objects in a hierarchical way and
allows navigation in large databases by changing the base
object, which is an object that becomes the main node through
which the navigation begins.

SOPView+ allows users to change the base object while
searching for objects in the databases; in order to do this, an
anchor is placed on the object. This makes it possible for users
to explore objects in a large database more easily.

C. PESTO

This system [6] was created from the GARLIC project [9],
whose objective is to build an information system capable of
integrating data that resides in different database systems. The
data can be queried through a language similar to SQL, which
has been extended to include object-oriented features. The
GARLIC project aims to provide a novel interface that offers the
query and navigation of objects, called the Portable Explorer of
Structured Objects (PESTO), which is the joint work between

2769-5654/22/$31.00 ©2022 IEEE 1914
DOI 10.1109/CSCI58124.2022.00344
Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

IBM and the University of Wisconsin - Madison, where they
work on the development of an interface for users.

PESTO offers its own interface in which it is possible to
navigate over objects, it is designed to explore object databases
and offers the possibility of making complex queries of objects
in databases, through a language similar to SQL thanks to the
query in place paradigm. This tool provides users with an
interface that allows interactive navigation and consultation of
the contents of GARLIC databases. Like SOPView+, PESTO
allows users to move back and forth in the database; it allows to
query and navigate through objects, which are displayed in a
reference hierarchy that can be represented by connecting nodes
of objects through links.

D. CORBA Object Browser

The purpose of this system [7] is to access CORBA objects
directly from a web browser using a URI scheme; it allows
browsing and invoking CORBA objects in the same way that
users browse the Internet. In this tool it is possible to view and
execute the methods of a specific object from a web browser;
however the user has to use a prototype browser called HotJava
Web Browser, which is no longer available.

The advantage of the HotJava Web Browser is that it had a
mechanism to access CORBA objects that run on a secure
Object Request Broker (ORB), through the CORBA Object
Browser. Accessing secure objects through the browser required
authentication with the remote ORB and also having a secure
communication.

E. Apache Axis2

It is a web services engine [8] developed by Apache
Software Foundation, which is interoperable, implemented in
C++ and Java, in which interoperable and distributed
applications can be created. Like WOX, Apache Axis2 is an
open source, XML-based framework that uses SOAP for
message exchange. Although Apache Axis2 works with objects,
it does not save the state of the objects, so its methods are only
invoked as if they were static methods. A particular feature of
this tool is that although it offers the execution of methods on
objects, it does not have an interface for its users, since it is
necessary to call the objects through their URL.

F. Comparison Table

Table 1 shows a comparison of the systems analyzed in this
section: S1) CORBAWeb, S2) SOPView+, S3) PESTO, S4)
CORBA Object Browser, and S5) Apache Axis2. A tick
indicates that the system has the feature, while a cross indicates
that the tool does not have it. The features considered for the
comparison are the following: open source, which refers to
software that is made freely available and may be redistributed
and modified; interoperability, which means that the system is
capable of communicating on different platforms or
programming languages; based on objects, which indicates that
the system supports the use of remote objects; web services,
which means that the system supports web services; use of
XML, which indicates that the system uses XML as a means of
communication between the client and the server; visualization
of objects, which indicates that the system allows the
visualization of objects graphically; visualization of attributes,
which means that the system allows the visualization of the

attributes that each object contains; execution of methods, which
refers to the fact that the execution of methods belonging to an
object is allowed through a web browser; web interface, which
indicates that the system provides a web interface in which the
user can view the methods of the remote objects; database
management, which means that the system is able to navigate
through object databases or repositories.

TABLE L. COMPARISON OF FEATURES OF THE ANALYZED SYSTEMS
Features S1 S2 S3 S4 S5
Open source v < < v v
Interoperability v < < v v
Based on objects v v v v <
Web services v < < < v
Use of XML < « < « v
Visualization of objects v v v v <
Visualization of attributes < v v v <
Execution of methods v « < v v
Web interface v « < v <
Database management < v v < <

III. WEB OBJECT IN XML

This section provides a brief introduction to the WOX
framework, which combines features of distributed object-based
systems and distributed web-based systems. Some of the
features of this framework are described.

WOX uses URLs to uniquely identify remote objects,
following the principles of the Representation State Transfer
(REST) architecture [10]. This is an important feature because
all objects are uniquely identified by their URL and can be
accessed from anywhere on the web, either through a web
browser or programmatically.

WOX uses an efficient serializer, called WOX serializer [2],
which is the basis of the framework for serializing objects,
requests and responses exchanged between clients and servers.
This serializer is an independent XML-based library, which is
capable of serializing Java, C#, PHP and Python objects to XML
and vice versa. One of its main features is the generation of
standard XML for objects, which is independent of the
programming language and allows interoperability between
different object-oriented programming languages. Applications
written in these programming languages can interoperate.

WOX has a set of standard and special operations that are
applied on local and remote objects. These operations include
requesting remote references, invoking static methods (web
service calls), invoking instance methods, destroying objects,
requesting copies, duplicating objects, updating and uploading
objects, invoking asynchronous methods, among others. Some
of these operations are described in [1]. The mechanism used by
WOX in a method invocation is illustrated in Figure 1.

1915

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

Internet

©)) 3)

Method
invocation

4)

Actual method

invocation
WOX Web
server object
Return
result

Desearilize to
WOX object

Serialize
to XML

» Dynamic
Proxy

Client
program |

Fig. 1. Mechanism of remote method invocation in WOX.

Serialize
result to XML
6)

Desearilize
result
D)

Return
result

(8) 5)

The series of steps carried out in the invocation of a method
in WOX is as follows: 1) the WOX client program invokes a
method on a remote reference (the way in which the client
invokes a method on a remote reference is exactly the same way
as if it invokes a method on a local object); 2) the WOX
dynamic proxy takes the request, serializes it to XML and sends
it over the network to the WOX server; 3) the WOX server takes
the request and deserializes it to a WOX object; 4) the WOX
server loads the object and executes the method on it; 5) the
result of the method invocation is returned to the WOX server;
6) the WOX server serializes the result to XML and it is
returned to the client, either the actual result or a reference to it
(the result is stored in the server in case a reference has been
sent); 7) the WOX dynamic proxy receives the result and
deserializes it to the appropriate object (real object or remote
reference); 8) the WOX dynamic proxy returns the result to the
WOX client program. From the point of view of the WOX
client program, it only performs the invocation of the method
and gets the result back transparently. The WOX client libraries
carry out the process of serializing the request and sending it to
the WOX server, as well as receiving the result of the method
invocation and deserializing it. The following sections present
the web system that allows to store and visualize WOX objects
through a web browser.

IV. ANALYSIS AND DESIGN

This section describes the functionality of the developed
web system, its structure and interface.

A. Functionality

The functionality of the web system is described below,
through a series of actions that can be carried out in it.

Access to a specific WOX object over the network. The web
system allows its users to access a WOX object stored in the
system from a unique URL generated by the same system. With
this URL, users can directly access the object without having to
enter the repository and search for their desired object among
all the existing objects in the same repository.

Visualization of objects graphically. Users can visualize,
through an interface, the attributes of a given WOX object. Two
views are provided: the first is a table that represents the object
and within it all its attributes are displayed regardless of its data

1916

type; the second is a view of the XML code that represents the
object, which is displayed in a format that allows the user to
understand each tag of the XML code.

Visualization of methods of any WOX object. Users can
view all the methods that belong to a particular object,
regardless of the parameters that each method requires to be
invoked. Each method has a space to display the response that
it returns when it is invoked.

Execution of any method belonging to the class of a WOX
object. Through the web system it is possible to invoke any
method of a WOX object; there is also a parameter verification
to prevent the user from entering erroneous parameter values,
this way it is ensured a correct invocation of a method.
Furthermore, the system can return a response from the
invocation of a method regardless of its data type. It is
important to mention that for the web system to be able to
execute a method on an object, it must have the class to which
that object belongs.

Storage of WOX objects on the server. Users are able to
upload WOX objects to the server for later manipulation, either
as a parameter for the invocation of an object or simply to store
it in the repository.

B. Structure

The web system consists of a dynamic web interface that
allows users to access WOX objects hosted in a repository. The
user can visualize each existing object in the repository in a
graphical way, in addition to being allowed to execute the
methods of each object through a web browser.

Figure 2 shows the navigation map, which represents the
structure of visualization used in the web system.

index. himl

What is
WOXSerializer?

View objects in
the repository

View object

Remove object Execute method
View object
response

Home

the repository

‘ Upload objects o ’

View methods
of the object

Fig. 2. Navigation map of the web system.

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

C. Interface Prototypes

Figure 3 shows the interface prototype for the list of objects
stored in the server's repository, in which the following fields
are displayed: object URL, which is a unique URL displayed to
access directly a specific object existing in the repository;
name, which displays the name of the XML file that represents
the WOX object; reference, which shows the class to which
each object belongs; actions, which provides two options to the
user, the first option is to view the object's attributes graphically
and the second option is to directly view and access the methods
that the object contains.

WOXServer Inicio Ver objetos en servidor Subir un objeto

Lista de objetos en el servidor

URL DEL OBJETO Nombre Referencia Acciones

betp /192,168,190 8080/ WOXServer WOXObject jsp2d0b =31 3563317| ibro.xmi WOXTesterLibro Verobjeto Ver métodos

[3pd0b=31356324 | perso WOXTester.Persona Verobjeto Ver métodos

‘n:w 192.168.1.90 8080/ WOXServes/ WOXObject 90 =313563456 | iPodxml WOXTesteriDevices Verobjeto Ver métodos

hetp /192,168,150 8080 WOXServer WOXC 10b=323267300| Objetos.xmi

Verobjeto Ver métodos

WOXTester Objects Verobjeto Ver métodos ‘

hetp/192.168.1.90.8080/WOXServer WOXObjec splOb 356376872 Listalibros i Aeraplist

Fig. 3. Interface prototype for the list of objects stored in the repository.

Figure 4 shows the interface prototype that shows the
graphical representation of a WOX object. The prototype
includes a table with a header that contains the ID that makes the
object unique and its class; in the body of the table is contained
the object's attributes and there is a button to access the object's
methods. In this example the object id is 313563317, and the
attributes of the object are the following: isbn, name, author,
editorial, and status.

WOXServer Inicio Ver objetos en servidor Subir un objeto

Objeto id: 313563317

WOXTester.Libro

isbn: 4

nombre: JUEGO DE TRONOS
autor: George R. R. Martin
editorial: PLANETA

estado: Prestado

Ver métodos

Fig. 4. Interface prototype for the visualization of a WOX object.

Similarly, in Figure 5, the interface prototype shows the
graphical representation of an object that can contain one or
more objects within its attributes. In the case shown, it is an
object of type array that contains three objects; the methods of
each object can be accessed through its methods button. In this
example there are three objects in the list; each object has its
own attributes and values: isbn, name, author, editorial, and
status of the object.

WOXServer Inicio Ver objetos en servidor Subir un objeto

Objeto id: 313563317
Array

La lista contiene 3 objetos:

Objeto i 313563317 Objeto id: 313563317

Objeco id: 313563317

Fig. 5. Interface prototype for the visualization of a list of WOX objects.

D. Interface

The home page of the web system is shown in Figure 3,
where the menu has the following four options: 1) Home; 2)
What is WOX serializer?; 3) View objects on the server; and 4)
Upload object to the server.

Fig. 6. Home page of the web system.

V. WEB SYSTEM IN OPERATION

This section presents the web system in operation. It
describes how objects are stored in the web system and how they
are visualized through the repository.

A. Storage of Objects

Figure 7 shows the operation of the web system to store
WOX objects, through a series of steps that are carried out
between client and server.

Step 1, the serialization of an object with the WOX
serializer, for which any of the programming languages
supported by WOX [11] can be used.

Step 2, the user proceeds to upload the object to the server
by selecting the option Upload an object to the server from the
main menu of the web system.

Step 3, the server is in charge of storing the object in the
directory called UploadTemp of the web system repository.

Step 4, the system proceeds to verify the object; it is
deserialized to verify that it does not contain errors or that it
already exists and depending on the result.

Step 5.1, the object is moved to the trash if it had errors.

Step 5.2, the object is registered in the repository in case it is
an object without errors.

1917

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

Step 6, the user is informed of the result of storing the WOX
object in the repository.

3. Storage the object in the UploadTemp directory.

4. Access to the UploadTemp directory and
verify the object.

==
Repository =

5. Verification of object

5.1 If it was a WOX object: Store it
in the WOXRP repository and
serialize it.

5.2 If it was not a WOX object: move
it to the WOXTrash bin.

WOX
Server

1. Serialization of object
with WOXSerializer

Rub 6. Answer to the user

Python

2. Upload generated
object

e
Client

Client

Fig. 7. Storing a WOX object.

B. Visualization of Objects

Figure 8 shows the operation of the repository for visualizing
WOX objects, through a series of steps that are carried out
between client and server.

Step 1, the user accesses the repository by selecting the
option View objects in the server from the main menu of the web
system.

Step 2, the WOXRP.xml object is deserialized, which is a
list of objects of the WOXObject class that contains the
information of all the objects stored in the repository.

Step 3, once the WOXRP.xml object has been deserialized,
the information of the registered objects can be accessed, so a
table is generated that will contain the URL and class of each
registered object.

Step 4, each registered object has two options, one to view
the object and another to access its methods.

Step 5, the generated table is shown, so that the user can
choose an object to be visualized.

In the interface of the web system to access the object
repository, the user must select the option View objects in the
server, which will take the user to the page shown in the
screenshot of Figure 9.

The object repository has four columns: the URL of the
object in the server, the name of the object, the remote reference
to the object, and the actions that can be executed on the object
(View object and View its methods). The View Object hyperlink
displays the graphical representation of the object and its
representation in XML, as shown in Figure 10.

1918

2. Deserialization of ihe WOXRP reposilory

3. Access to the list of objects
registered in the repository

4. Creation of tablc with
description of cach object

Wm table with WOX objects

Server

1. Request for access
obijcct repository

tV

Client

Fig. 8. Access to the repository for visualization of objects.

Ver objetos en el servidor

Fig. 9. Access to the repository for visualization of objects.

<object t

ID 057462666
WOXTester.Biblioteca

idBiblioteca: E152DS
nombreBiblioteca: Gandhi Méxica
ubicacion: México D.F

telefono: 5530492833

horario: 8:30 - 12:30

Fig. 10. Visualization of an object graphically and in XML.

g" value="5590492833" />

- 19:30" />

/>

<object type="list

elementType="Object” length="0" id="1

</field>

</object>

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a web system that allows you to store
objects, as well as visualize their state and methods. This web
system is a complement of Web Objects in XML (WOX), which
is a framework for programming distributed object-based
applications.

The web system met the objectives set at the beginning of its
development, since it was possible to successfully design and
implement the storage of WOX objects and provide an object
repository from which it is possible to visualize, through a web

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

browser, each object that has been created in it, both graphically
and in its XML representation.

Future work is necessary to complete the implementation for
displaying the methods of any WOX object found in the
repository, as well as the execution of methods of a WOX object
through an interface, where the values for each of its parameters
are provided.

REFERENCES

[11 C. R. Jaimez-Gonzalez, S. M. Lucas, “Implementing a State-Based
Application Using Web Objects in XML”, in: Meersman R., Tari Z. (eds)
On the Move to Meaningful Internet Systems 2007: CooplS, DOA,
ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer
Science, vol. 4803, pp. 577-594, 2007, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-76848-7_40

[2] C. R. Jaimez-Gonzélez, S. M. Lucas, E. Lopez-Ornelas, “Easy XML
Serialization of C# and Java Objects”, Balisage: The Markup Conference
2011, Montréal, Canada, August 2011, in Proceedings of Balisage: The
Markup Conference 2011, Balisage Series on Markup Technologies, vol.
7. https://doi.org/10.4242/BalisageVol7.Jaimez01

[3] C.R.Jaimez-Gonzalez, W. A. Luna-Ramirez, S. M. Lucas, “A Web Tool
for Monitoring HTTP Asynchronous Method Invocations”, in
Proceedings of the IEEE International Conference for Internet

Authorized licensed use limited to: UNIVERSIDAD AUTONOMA METROPOLITANA. Downloaded on February 08,2025 at 05:33:18 UTC from IEEE Xplore. Restrictions apply.

1919

(4]
[3]

(6]

(7
(8]
[

[10]

(1]

Technology and Secured Transactions, pp. 127-132, London, December
2012, https://iceexplore.ieee.org/document/6470883

P. Merle, C. Gransart, J. Geib, “CorbaWeb: A Generic Object Navigator”,
http://www.lifl.fr/~merle/papers/96_ WWW5/paper/Overview.html

S. Chang, H. Kim, “SOPView+: An Object Browser Which Supports
Navigating Database by Changing Base Object”, in Proceedings of the
21st International Conference on Computer Software and Applications
Conference (COMPSAC 97), 1997.

M. Carey, L. Haas, V. Maganty, J. Williams, “PESTO: An Integrated
Query/Browser for Object Databases”, in Proceedings of the 22th
International Conference on Very Large Data Bases, Mumbai, India,
1996.

G. Kumar, P. Jalote, “A Browser Front End for CORBA Objects”, in 10th
International World Wide Web Conference, 2001.

Apache Software Foundation. Web Services - Apache Axis.
http://ws.apache.org/axis/

M. Tork, M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J.
Thomas, E. Wimmers, “The Garlic Project”, in Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, New
York, 1996.

R. Fielding, “Architectural Styles and Design of Network-Based Software
Architectures”, PhD thesis, USA, 2000.

C. R. Jaimez-Gonzalez, S. M. Lucas, “Web Objects in XML (WOX):
Efficient and easy XML serialization of Java and C# objects”,
http://woxserializer.sourceforge.net/

