
Paper—Web Application to Support the Learning of Programming Through the Graphic

Web Application to Support the Learning of
Programming Through the Graphic Visualization of

Programs
https://doi.org/10.3991/ijet.v15i06.12157

Carlos R. Jaimez-González(*), Miguel Castillo-Cortes
Universidad Autónoma Metropolitana, Ciudad de México, México

cjaimez@correo.cua.uam.mx

Abstract—This paper presents a web application to support the learning of
programming at the undergraduate level, which allows students to graphically
visualize through animations the execution of programs written in the Java pro-
gramming language. The web application supports the understanding of pro-
grams and the basic concepts of programming, such as declaration of variables,
assignment of values to variables, use of control structures, and calls to functions
with parameters. The development of the web application, its architecture and the
three systems that compose it are presented: data collection, processing and rep-
resentation. The operation of the web application is shown through three pro-
grams, for which their execution is visualized graphically.

Keywords—Educational technology, education computing, software under-
standing, software visualization

1 Introduction

Understanding a program is having the ability to understand how the source code
performs the task for which it was created. The understanding of programs is an area
of software engineering focused on developing techniques and tools, based on cognitive
and engineering processes, which are used for tasks of reuse, inspection, maintenance,
migration, software extension, among other applications; but they can also be used in
areas such as education or training. The aim of this area is to achieve a better under-
standing of computer applications as stated in [1].

One of the main challenges in the area of program understanding is to be able to
determine the relationship between the domain of the problem and the domain of the
program [2]. The first concept is the result of the execution of the program, for example,
printing on the screen the result of an operation; the second concept comprise all the
components of the program, which produce the behavior of the system, for example,
the methods used to solve an operation [2]. In order to be able to represent these rela-
tionships, between domain of the problem and domain of the program, the use of soft-
ware visualization is used, which is an area of software engineering whose objective is

iJET ‒ Vol. 15, No. 6, 2020 33

https://doi.org/10.3991/ijet.v15i06.12157
https://doi.org/10.3991/ijet.v15i06.12157
mailto:cjaimez@correo.cua.uam.mx
mailto:cjaimez@correo.cua.uam.mx

Paper—Web Application to Support the Learning of Programming Through the Graphic

to generate, from certain aspects of the system, one or more multimedia representations,
with the purpose of facilitating the understanding of it [3] [4].

This paper presents a web application to support the learning of programming
through the graphic visualization of programs written in the Java programming lan-
guage. This application complements the teaching-learning process of programming,
because it encourages the interconnection of concepts; this way, the knowledge of the
student is reinforced through visual representations of the execution of programs that
are shown in the web application.

The rest of the paper is organized as follows. Section 2 presents the theoretical
framework, where cognitive models and software visualization are addressed. Section
3 describes a series of tools relevant to the implemented application and a comparative
analysis is carried out. In section 4 the development of the web application, its archi-
tecture and the three systems that compose it are explained. Section 5 shows the oper-
ation of the web application, along with some examples of programs for which their
execution is graphically displayed. Finally, conclusions and future work are presented
in section 6.

2 Theoretical Framework

In the development of systems for software understanding it is important to rely on
other fields of study, such as cognitive psychology, psychopedagogy, program visuali-
zation, among others. The following sections deal with the topics of cognitive models
and software visualization, which are very relevant to the web application presented in
this paper.

2.1 Cognitive Models

The integration of Information and Communication Technologies (ICT) in the teach-
ing-learning processes have generated several changes. The role of teachers does not
focus on transmitting information anymore, but on encouraging the student's personal
search for knowledge [5]. Traditionally, teachers used to take the main role by exposing
concepts, while students used to have a passive attitude, playing the role of receiver of
those concepts.

In contrast to the traditional model, the constructivist model perceives teaching as a
critical activity and not only as the transmission of knowledge, it encourages the inno-
vation of methods that allow students to develop their own cognitive structure. In this
approach, the most important thing is learning, for which the teacher takes a role of
facilitator, moderator and mediator between the student and the knowledge [6].

Cognitive development is a field of research of cognitive psychology that studies the
mental processes involved in the creation of knowledge. A software developer under-
stands a program when it has the ability to understand how the source code performs
the task for which it was created, for which it builds a mental model with the infor-
mation extracted from the program, then it looks for associating the information to its
previous knowledge, finally, it will understand the functionality of the system.

34 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

Learning is to combine the knowledge already acquired with new concepts through
learning processes; for example, the Bottom Up model starts from specific concepts
obtained from reading the program to generate general abstractions; or the Top Down
model, which assumes that one already has a notion of the functionality of the program
to propose a hypothesis, which will later be verified when reviewing the source code
[7] [8].

Cognitive models are composed of three basic elements: knowledge, the process of
assimilation and a mental model. The first element proposes two distinctions: internal
knowledge, which refers to the knowledge that is already owned; and external
knowledge, which is integrated by the new concepts that the system will provide. The
second element is formed by learning strategies, such as Bottom Up or Top Down. Fi-
nally, the third element is a representation of the system, which is given in order to
explain its behavior [7] [8].

2.2 Software Visualization

The visualization of programs is an area of software engineering related to the visual
representation of information, whose objective is to generate, from certain aspects of
the system, one or more views that will facilitate the understanding of it. A view is a
way of representing the elements of a system and the relationships between these ele-
ments [7].

The multimedia representations oriented to the understanding of software must pro-
vide three basic views: the output of the system, the elements of the program that gen-
erate that output, and the relationship between the previous two. These allow to elabo-
rate representations that associate the domain of the problem with the domain of the
program; that makes it easier to relate the knowledge that is owned and the concepts
used by the system [4] [9]. These representations are not easy to build, since they are
strongly based on cognitive and engineering factors, so it becomes important to rely on
several areas of knowledge such as graphic design, cognitive psychology, psychopeda-
gogy, computing and other disciplines related to the creation of multimedia effects and
learning [3].

The aspects of software needed to elaborate a representation are obtained using in-
formation extraction techniques, that are classified by the type of information that they
extract, which can be static or dynamic [2]. The techniques of extracting static infor-
mation are used to verify that there are no syntactic, lexicographic or even semantic
errors, making use of syntactic analysis tools to examine the source code [2]. The tech-
niques for extracting dynamic information are responsible for obtaining information on
the behavior of the program and its components (methods, variables, method invoca-
tions, etc.) at the time of execution. One of the techniques for obtaining this data is the
use of code instrumentation, which consists of placing instructions in the source code
in order to monitor their behavior during execution [2].

Software visualization includes two fundamental areas: the visualization of pro-
grams and the visualization of algorithms, depending on what it is required to under-
stand. The visualization of programs allows to have views of the source code and its
structure. A static representation is useful to verify the validity of the source code,

iJET ‒ Vol. 15, No. 6, 2020 35

Paper—Web Application to Support the Learning of Programming Through the Graphic

usually code editors are used to give a better presentation and readability of the source
code through indentation, differences of colors between reserved words and other iden-
tifiers. The dynamic representation shows program information at runtime, for exam-
ple, highlighting the instructions of the code when they are being executed [10]. The
visualization of algorithms focuses on representing the semantics of the program, this
means that it generates views of the behavior of the program in execution, without
showing the instructions and operations that make this behavior possible [10]. These
concepts influence the development of software understanding tools.

3 Related Work

This section carries out a review of the state of the art of tools for the understanding
and visualization of programs. A comparative analysis of the tools is also provided at
the end of the section.

BlueJ [11] is a development environment designed to learn object-oriented program-
ming with the Java programming language. It uses visualization and interaction tech-
niques to improve the user experience. It is an environment in constant development,
which was created by the University of Kent in Canterbury, United Kingdom, and the
University of La Trobe, in Melbourne. BlueJ colors the background of each block of
code to visually identify the sections of the program, it helps in the detection of mis-
placed keys and shows details of the instantiated objects.

Jeliot 3 [12] is a software visualization tool that shows how a program is interpreted
in the Java language; the method calls, variables and operations are visualized through
a multimedia representation that allows to follow step by step the process of execution
of the program. The Jeliot3 interface is composed of three panels: the upper left panel
is used to enter the code that will be executed; the lower left panel shows the output of
the program execution; while the panel on the right displays the representation of the
program in execution, where there are four areas, which identify the initialization of
variables, the representation of operations and arrays.

jGrasp [13] is a development environment that automatically generates animated
visualizations to improve software understanding. jGrasp is able to generate diagrams
of control structures for the Java, C, C++ languages, among others; it also creates UML
diagrams. The visualizer represents data structures such as stacks, queues, linked lists,
etc. The interface of jGrasp includes an area where the source code is entered; when
executing the source code, it shows in a lower left panel the instances of the elements
created in the program, such as variables and arrays. In an independent window it can
be visualized the representation of these instances graphically.

Scratch [14] is an application to program interactive stories, games and animations,
just by defining rules using blocks of instructions. The projects developed in this appli-
cation can be shared within a project catalog, in this way the user has access to the
applications created by third parties. The Scratch platform interface shows a window
with three sections, on the left there is an area where the program animation will be
displayed and in the central part there is a set of blocks of instructions that can be used
by the user; instructions such as advance, rotate, change direction, change value of a

36 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

variable, among others. In the third section there is an area where the user will drag the
blocks of instruction that he wants to use for his animation and he will be able to ac-
commodate them like a puzzle. In order to execute the animation, the blocks that were
joined have to be pressed.

There are other tools for the understanding and visualization of software that were
not analyzed in depth, which was because these tools are of less relevance to those
previously reviewed. Some of these tools are the following: an algorithmic animation
platform [15], Understand [16], CodeSurfer [17], Imagix 4D [18], ShriMP [19], Alma
[20], a debugging tool to learn algorithms [21], SeeSoft [22], Extravis [23], some au-
thoring tools reported in [24], among others.

Table 1 shows a comparison of functionalities of the tools discussed previously and
the web application developed. The tools shown in Table 1 are the following: H1)
BlueJ, H2) Jeliot3, H3) jGrasp, H4) Scratch, H5) Developed web application. The tick
indicates that the tool has the functionality, while the cross indicates that the tool does
not have it.

Table 1. Functionalities of the analyzed tools and the one developed

Functionality H1 H2 H3 H4 H5
1) Code with animations û ü ü ü ü
2) Web application û û û ü ü
3) Representation of classes û ü ü û û
4) Illuminated code blocks ü û û û ü
5) Editable code ü ü ü û ü
6) Representation of methods û û û û ü
7) Representation of control structures û û û ü ü
8) Parameter representation û ü ü û ü

The first functionality indicates that the representation of the execution of the code

is carried out with animations; the second one indicates that the tool analyzed is a web
application; the third functionality means that the tool shows a graphic representation
of classes; the fourth functionality refers to the syntax highlighting and shading of code
blocks; the fifth functionality shows that the tool allows the editing of source code; the
sixth functionality indicates that the tool graphically represents the methods; the sev-
enth functionality indicates that the control structures are represented visually in the
tool; and finally, the eighth functionality means that the tool performs the visual repre-
sentation of parameters.

It is difficult to evaluate the impact of this type of tools in the learning process. In
the literature there are no conclusive empirical results that support which of these tools
best meets their objectives [25]. It should be noted that visual representations are suc-
cessfully used in different disciplines, such as physics, chemistry, biology, mechanics,
among others, to illustrate complex concepts and processes, since they use metaphors
that help in understanding [26]. Computer Science is a discipline that also makes use
of visual representations for different processes, which is why the web application that
was developed and presented in this paper makes use of them.

iJET ‒ Vol. 15, No. 6, 2020 37

Paper—Web Application to Support the Learning of Programming Through the Graphic

4 Development of the Web Application

This section presents the development of the web application, describes its architec-
ture, and details the operation of each of the systems and modules that comprise it.

The architecture of the web application consists of three systems: data collection,
data processing and data representation. The data collection system is responsible for
taking the information provided by the user as input to the application, and validates
the lexical part of the source code entered by the user. The data processing system takes
the collected data, analyzes it and processes it for later use; this system provides an
interface that is combined with the graphical interface that allows the user to interact
with the animation generated by the application. The data representation system shows
the user the result of processing the data that was entered as input to the application; it
is the system responsible for generating the visual representation of the execution of
the source code entered.

4.1 Data Collection System

The data collection system is composed of various modules from which the input
data is obtained, it provides mechanisms for communication and interaction with the
user and defines most of the graphic interface of the application. Figure 1 shows the
distribution of the application's interface, where four areas can be seen: the text editor
that covers the entire screen and has a transparent background; the representation area,
just below the text editor, where the animation will take place and has a black back-
ground; on the right side is the control panel; and finally, in the lower part of the screen
there is a panel containing the syntax tree and the call tree. The modules that compose
the data collection system are explained below.

Fig. 1. Distribution of the web application's interface

38 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

Text editor module. It is responsible for obtaining the input data for the web appli-
cation, it is an essential communication mechanism with the user, since it is where the
text corresponding to the source code in the Java programming language is entered. The
text editor displays the text in a format that facilitates the reading of the source code, it
uses different colors for the reserved words of the Java language. The text editor high-
lights the source code at the moment in which the animation is carried out by the stu-
dent, in order to indicate the code instruction that is being executed or the instruction
that will be executed.

The text editor was created as a table with rows and columns, where each character
that is entered is placed internally within a specific cell to be able to locate it by means
of its row and column coordinates. For the implementation, it was used the Hypertext
Markup Language (HTML) to create the text area, Cascading Style Sheets (CSS) for
the presentation and the JavaScript language for the interactivity.

Controls module. It consists of several controls of the web application, which in-
teract with the data collection system and the data processing system. The user interacts
with the application through the controls, which are organized in a menu, shown in the
right panel of Figure 1. The menu handles two colors for the controls: green for those
that can be used at that moment, and red for those that are disabled because there is an
animation process that requires them to be temporarily blocked.

Some of the controls found in this module are the following: speed control deter-
mines how quickly the animation is executed; stop control allows to stop the animation
at a particular step; the theme control changes the background color and text of the
source code; the opacity control modifies the degree of transparency of the text editor;
the full screen control defines whether the text editor will occupy the entire screen or
only the default space; the autocomplete control activates the mechanism that displays
a list of words as it is written in the text editor; the current line control activates the
mechanism to highlight the text that represents at execution time the instruction that
has been executed; the next line control activates the mechanism to highlight the text
that represents at runtime the instruction that will be executed in the next step; the ex-
amples control allows to load in the text editor several examples of source code in the
Java programming language; finally, the panel control allows to show or hide the panel
that is in the lower part of Figure 1, where the representation of the associated syntactic
tree and the call tree are.

Lexical analyzer module. It is used to verify the source code that the user entered
in the text editor and check that the words contained are typical of the Java program-
ming language. The lexical analyzer generates a list of objects called tokens from the
words analyzed, where each object contains the word analyzed, a symbol that identifies
the word, the line where the word was found, the column of the first character and the
column of the last character of the word analyzed. The output of the lexical analyzer is
the list of tokens or lexical components, which serve as input to the parser described
below.

iJET ‒ Vol. 15, No. 6, 2020 39

Paper—Web Application to Support the Learning of Programming Through the Graphic

4.2 Data Processing System

The data processing system consists of several modules that are the backbone of the
operation of the web application; it is responsible for dealing with the input data, uses
the mechanisms designed for data representation, as well as allows the user to interact
directly with the animation. The modules that compose this system are explained be-
low.

Syntactic analyzer module. Its function is to verify that the syntactic structure of
the source code entered in the text editor is correct; in this case for the Java program-
ming language. The operation of the syntactic analyzer starts from the list of tokens
generated by the lexical analyzer, which is a module of the data collection system, and
ends with the creation of a syntactic tree that specifies the order that will be followed
for the data visualization process, which represent the execution of the input data for
the application.

Program execution script module. It is where the syntactic tree nodes are stored,
which represent the instructions of the valid source code. This module has an area for
storage and provides the functions for insertion, deletion and obtaining instructions.

The storage area of this module is represented by a tree of objects called the execu-
tion tree, which works with three different levels: the first level is the root node, which
contains the instructions to be executed; the second level is formed by the objects that
represent the declaration of a method and each element of this level contains its set of
instructions, that is, it contains the nodes of the syntactic tree belonging to the node that
represents the definition of a function; the third level contains objects that represent the
control structures, such as if, else, for, while, do while, and each element of this level
contains its set of instructions from the syntax tree.

The execution tree is modified as the execution animation of the program flows.
Figure 2 shows a representation of the execution tree.

Fig. 2. Representation of the execution tree

40 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

The function for insertion of this module is composed of two mechanisms: the first
mechanism inserts an object at the second level, together with its set of nodes from the
syntactic tree, which represents the instruction of method statement; the second mech-
anism inserts an object at the third level, together with its set of nodes from the syntactic
tree, which represents the instruction of a control structure.

The function for obtaining instructions of this module returns an object that contains
the instruction that will be executed; it returns the corresponding instruction in increas-
ing order from the last node of level 2 and its last associated sub-node of level 3. If
there is no associated level 3 sub-node, it returns its corresponding instruction in in-
creasing order.

The function for elimination of this module is responsible for deleting nodes from
the execution tree. A node is eliminated if the path of its instruction list (nodes of the
syntactic tree) comes to an end. A second level node that represents the declaration of
a method can be eliminated if in its set of instructions it is possible to execute a return
instruction. A third level node that represents the control structures can be eliminated
if the evaluation of its condition results in a false result.

Execution steps generator module. It is responsible for adding or removing in-
structions to the program execution mechanism, as well as calling the appropriate meth-
ods for data representation. This module bases its operation on the basis of the syntactic
tree, the interaction with the user through the controls module and the result of the
execution of instructions of the input data. Two of the most representative steps that
rule the operation of this module are: the preparation of the animation, with which you
get the first instruction to execute, taken from the syntactic tree; and the execution of
the animation that is responsible for simulating the execution of an instruction of the
source code entered by the user, which can be carried out step by step or automatically
from start to end.

4.3 Data Representation System

The data representation system is responsible for displaying the animation that rep-
resents the execution of a program in the Java programming language. The implemen-
tation of the modules that comprise it is described below.

Models module. Data representation uses different object models that represent an
instruction. Each of these models extends from a main model. There are different types
of attributes that represent the types of elements that are displayed in an animation, such
as variable names, data types, method names, program flow control instructions, vari-
able values, results of the evaluations of logical expressions, among others. Similarly,
there are attributes of the models that allow to draw on the screen the visual represen-
tations of the elements, such as the different geometric shapes and text.

Visualization module. It is responsible for displaying elements on the screen,
through the use of an application programming interface (API), called Three.js, with
which it is possible to draw elements on the screen and apply different textures and
colors. This visualization module creates all the basic elements to show on the screen
the different geometric figures and text, which represent the execution of the source
code that is entered by a user.

iJET ‒ Vol. 15, No. 6, 2020 41

Paper—Web Application to Support the Learning of Programming Through the Graphic

5 Operation of the Web Application

In this section the web application is shown in operation, through three examples of
programs, for which its execution is graphically visualized: the first program is simple,
it contains three declarations of integer variables, with their corresponding assignments;
the second program calculates the factorial of a number, which shows how the stack of
method calls is represented, as well as the control structures, with their corresponding
local variables; finally, the third program performs an ordering through the bubble
method, where the stack of method calls, control structures and variable manipulation
are again visualized.

5.1 Simple program with declaration of variables

In this example a simple program is demonstrated, its source code is shown in Table
2. Some screenshots are presented with the graphic visualization of the program execu-
tion, which was carried out step by step in the web application.

The source code shown in Table 2 contains the declaration of the MyClass class in
line 1; the declaration of the static method main() is inside the class, in line 2. Within
the main() method, in lines 3 to 5, there are the declarations of three variables of type
int: a, b and c, which have not been initialized. In line 6 it is the assignment of the
variable a = 3; in line 7 the assignment of the variable b = 7; and finally, in line 8, the
variable c is assigned the result of the sum of the values contained in variables a and b.
Line 9 contains the key that closes the main() method, while line 10 contains the closing
key of the MyClass class.

Table 2. Source code of the example program

Line number Source code
1 public class MyClass {
2 public static void main() {
3 int a;
4 int b;
5 int c;
6 a = 3;
7 b = 7;
8 c = a + b;
9 }
10 }

Figure 3 shows a screenshot with the application's interface, where three main areas

can be seen, described in a previous section. In the left panel is the text editor to enter
the source code of the program, which by default occupies the full screen; however, it
can be configured to change its size, degree of transparency and background color. The
central panel is where the animation of the program execution will be displayed; this
panel occupies the full width of the screen. Finally, the panel on the right side contains

42 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

the controls menu, where there are several controls that allow manipulating the anima-
tion of the program execution: Prepare to be able to start executing the animation; An-
imate to run the animation continuously without stopping; Pause to pause the animation
that is currently running continuously; Step by step to execute the animation step by
step (instruction by instruction); among others.

Fig. 3. Interface to start the application

Figure 4 shows a screenshot of the web application once the execution of the pro-
gram has begun and after having pressed the Step by step control several times, up to
the point of having created the three variables of the program: a, b and c, that is, until
it has reached line 5 of the source code. In the screenshot of Figure 4 it can be seen that
several blocks have already been created in the animation: the black and gray blocks
on the right side represent the MyClass class and the System object of the Java language;
the dark brown block at the center represents the call to the main() method of the class;
while the light brown blocks, which are located above the dark brown block, represent
the three variables that have been created in the program: a, b and c. The idea of the
blocks is to try to simulate the space that the elements occupy in memory, as well as
the dependencies that exist among them.

In order for the student to follow step by step the execution of the program in the
code, the text editor indicates the last instruction or sentence executed with orange
background color, while the next instruction that will be executed is indicated with pink
background color. In the screenshot of Figure 4 the last sentence executed was the dec-
laration of the variable c, which is found with an orange background color; while the
next instruction to be executed is the assignment a = 3, which has a pink background
and will be executed once the student presses the step by step control of the controls
menu again.

iJET ‒ Vol. 15, No. 6, 2020 43

Paper—Web Application to Support the Learning of Programming Through the Graphic

Fig. 4. Visualization of the animation after creating variables

In Figure 5 a screenshot of the same animation is shown, once values have been
assigned to variables a and b. The last sentence that is running, with orange background
color, is the assignment of the variable c, which is the sum of a + b. It is observed in
the animation how the value 7 is traveling from the box of variable b to the area where
the operation will be performed.

Fig. 5. Assignment of values to variables a and b

Figure 6 shows a screenshot with an animation that evaluates the operation 3 + 7 =
10, and assigns it to the variable c, as indicated in the source code of the program. It
should be noted that all the instructions that are executed from the source code are

44 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

displayed in the application in an animated way, so that the student can observe how
the program is executed step by step, along with the graphic visualization.

Fig. 6. Evaluation of the operation 3 + 7 = 10

Finally, Figure 7 shows that the value of 10, which was the result of the operation of
a + b, is travelling towards the box of variable c, where the question mark will disap-
pear, indicating that the assignment to the variable has been carried out.

Fig. 7. Assignment of a value to the variable c

The program presented in this section is simple, but it shows the way in which the
web application works for the graphic visualization of programs through animations.

iJET ‒ Vol. 15, No. 6, 2020 45

Paper—Web Application to Support the Learning of Programming Through the Graphic

This example allows the student to observe how methods, variables, operations and
assignments are visually represented in the web application, and how the program is
executed step by step. The following two subsections show examples of the execution
of more elaborate programs.

5.2 Program to calculate the factorial of a number

Figure 8 shows a screenshot of the web application once it has started the execution
of a program that is responsible for calculating the factorial of a number, and after hav-
ing pressed the step by step control several times. The animation of the program is in a
step where there are several blocks of instances of method calls (in dark brown color),
as well as blocks that represent the conditional control structures if and else (in black
and gray color), which are part of the execution of the program. Additionally, the blocks
of variables (in light brown color) are observed, which are stacked on the block of the
method or control structure to which they belong. It can also be seen the source code of
the program that is running in the text editor, where the last instruction that was exe-
cuted in the animation is marked, with orange background color, as well as the instruc-
tion that will be executed in the next step, with pink background color. This program is
more complex than the previous one and shows the way in which the stack of method
calls and control structures are visually represented in the application, as well as the
creation of variables corresponding to each of them.

Fig. 8. Program that calculates the factorial of a number

5.3 Program to sort an array of elements

This subsection presents a program that sorts an array using the bubble method. Fig-
ure 9 shows a screenshot of the web application once the execution of the program has
started, and after having pressed the step by step control several times. In the screenshot

46 http://www.i-jet.org

Paper—Web Application to Support the Learning of Programming Through the Graphic

of Figure 9 there are three blocks that correspond to the call to the main() method, in
dark brown color; and to the two control structures for, in black and gray color, found
inside the main() method. In addition to these blocks, the blocks of variables, in light
brown color, are observed, which are stacked on the block of the method or control
structure to which they belong. As well as in the previous examples, it can also be seen
the source code of the program that is running in the text editor, where the last instruc-
tion executed in the animation is also marked, with orange background color, as well
as the instruction that will be executed in the next step, with pink background color.

Fig. 9. Program that sorts an array of elements

It should be noted that for the source code that is entered into the text editor, the
graphic visualization of the program will be carried out, through the animation that will
represent methods, control structures and variables through the blocks that have been
shown in these three examples.

6 Conclusions and Future Work

This paper presented a web application to support the learning of programming,
which allows students to graphically visualize through animations the execution of pro-
grams written in the Java programming language. The web application supports the
understanding of programs and understanding of the basic concepts of programming,
such as declaration of variables, assignment of values to variables, use of control struc-
tures, and calls to methods with parameters.

It was carried out a comparative analysis of tools similar to the web application pre-
sented, and the most relevant features for the visualization of programs were high-
lighted. The implementation of the application was also presented, where its

iJET ‒ Vol. 15, No. 6, 2020 47

Paper—Web Application to Support the Learning of Programming Through the Graphic

architecture and the three systems that composed it were explained: data collection,
data processing and data representation.

The operation of the web application was illustrated through three programs, for
which its execution was graphically visualized. It is important to emphasize that the
step by step execution of a program helps the student to understand it, because while it
is displayed graphically in the web application, the instruction that is being executed in
the source code is also shown.

Further work is required to develop an assessment instrument to formally apply it to
students of introductory courses of programming, with the aim of assessing their opin-
ion about the use of the web application that was presented in this paper. Once the
instrument is applied to students, the application will be improved according to the
feedback received. Additionally, work is being carried out in the web application to
develop an interpreter to execute programs written in the C programming language,
which will also be graphically visualized.

7 References

[1] Berón, M., Uzal, R., Henriques, P., Pereira, M. (2007). Understanding of programs by visual
inspection and animation. IX Workshop of Researchers in Computer Science, Chubut, Ar-
gentina.

[2] Bernardis, H., Berón, M., Riesco, D., Henriques, P., Pereira, M. (2011). Dynamic infor-
mation extraction in object-oriented programming (Java). XIII Workshop of Researchers in
Computer Science, Rosario, Argentina, pp. 413-417.

[3] Berón M., Riesco, D., Montejano, G., Henriques, P., Pereira, M. (2010). Strategies to facil-
itate the understanding of programs. XII Workshop of Researchers in Computer Science, El
Calafate, Santa Cruz, Argentina, pp. 445-449.

[4] Miranda, E., Berón, M., Montejano, G., Riesco, D., Henriques, P., Pereira, M. (2011). Soft-
ware visualization: concepts, methods and techniques to facilitate the understanding of pro-
grams. XIII Workshop of Researchers in Computer Science, Argentina, pp. 519-523.

[5] Morales, M., Trujillo, J., Raso, F. (2015). Perceptions about the integration of ICT in the
teaching-learning process of the university. Pixel-Bit Journal, 46, pp. 103-117.

[6] Martínez, A., Torres, L. (2013). Personal learning environments (PLE). From how to teach
to how to learn. Edmetic. Journal of Media Education and ICT, 2 (1), pp. 39-57.

[7] Ruiz, J., Hernández, J., Gutiérrez, D., Harvey, G., Salinas, A. (2013). Comparison between
software packages to support the teaching of Java programming. Technical Report.

[8] Berón, M., Henriques, P., Pereira, M., Uzal, R. (2006). Tools for understanding programs.
VIII Workshop of Researchers in Computer Science, Morón, Buenos Aires, Argentina.

[9] Berón, M., Uzal, R., Henriques, P., Pereira, M. (2008). Code inspection to relate the domains
of the problem and program for the understanding of programs. X Workshop of Researchers
in Computer Science, Santa Rosa, La Pampa, Argentina, pp. 549-553.

[10] Moroni, N., Señas, P. (2002). SVED: algorithm visualization system. VIII Congreso Argen-
tino de Ciencias de la Computación, Buenos Aires, Argentina, pp. 1175-1184.

[11] BlueJ. A Java development environment. Available: https://www.bluej.org/
[12] Jeliot. A program visualization application. Available: http://cs.joensuu.fi/jeliot/
[13] jGRASP. An integrated development environment with visualizations for improving soft-

ware comprehensibility. Available: http://www.jgrasp.org/
[14] Scratch. Grupo Lifelong Kindergarten. MIT Media Lab. Available: http://scratch.mit.edu

48 http://www.i-jet.org

https://www.bluej.org/
https://www.bluej.org/
http://cs.joensuu.fi/jeliot/
http://cs.joensuu.fi/jeliot/
http://www.jgrasp.org/
http://www.jgrasp.org/
http://scratch.mit.edu/

Paper—Web Application to Support the Learning of Programming Through the Graphic

[15] Esponda, M. (2008). An algorithmic animation platform for the web. International Journal
of Emerging Technologies in Learning, 3(4), pp. 29-40.

[16] Scitools. Available: https://scitools.com/
[17] CodeSurfer. A code browser. GrammaTech. Available: https://www.grammatech.com/pro-

ducts/codesurfer
[18] Imagix. A source code analysis tool. Available: http://www.imagix.com/products/source-

code-analysis.html
[19] Shrimp. Simple Hierarchical Multi-Perspective visualization tool. Available:

http://www.thechiselgroup.com/shrimp/
[20] Alma. A system for program visualization and animation. Available:

http://epl.di.uminho.pt/~gepl/ALMA/
[21] Khedr, A., Bahig, H. (2017). Debugging tool to learn algorithms: A case study minimal

spanning tree. International Journal of Emerging Technologies in Learning, 12(4), pp. 90-
100. https://doi.org/10.3991/ijet.v12i04.6442

[22] Eick, S., Steffen, J., Sumner, E. (1992). Seesoft-a tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering, 18 (11), pp. 957-968.

[23] ExTraVis. Execution Trace Analysis Through Massive Sequence and Circular Bundle
Views. Available: http://swerl.tudelft.nl/bin/view/Main/ExTraVis

[24] Then, M., Wallenborn, B., Ianniello1 B., Vu, D., Fuchs, M., Hemmje1, M. (2016). Innova-
tive authoring tools for online-courses with assignments. International Journal of Emerging
Technologies in Learning, 11(2), pp. 29-40. http://dx.doi.org/10.3991/ijet.v11i02.5108

[25] Compañ-Rosique, P., Satorre-Cuerda, R., Llorens-Largo, F., Molina-Carmona, R. (2015).
Teaching to program: a direct way to develop computational thinking. Journal of Distance
Education, 46.

[26] Naps, T., Rossling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen,
A., Malmi, L., McNally, M., Rodger, S., Velazquez-Iturbide, J. (2003). Exploring the role
of visualization and engagement in Computer Science Education. Report of the Working
Group on "Improving the Educational Impact of Algorithm Visualization", SIGCSE Bulle-
tin, 35, pp. 131-152.

8 Authors

Carlos R. Jaimez-González is an Associate Professor at the Information Technol-
ogies Department at the Universidad Autónoma Metropolitana Campus Cuajimalpa, in
Mexico City. He received his PhD degree in Computer Science from the University of
Essex, United Kingdom in 2011. His research interests include technologies for sup-
porting education, interoperability in distributed systems, XML and related technolo-
gies, and the development of web and e-commerce applications. He has a distinction as
a national researcher from the Mexican Government.

Miguel Castillo-Cortes is a mobile and web application developer. He received his
BSc degree in Information Technologies and Systems from the Universidad Autónoma
Metropolitana Campus Cuajimalpa, Mexico in 2017. He obtained the best final project
award in his undergraduate studies. His research interests include technologies for sup-
porting education, mobile and web application development.

Article submitted 2019-10-31. Resubmitted 2019-12-07. Final acceptance 2019-12-08. Final version pub-
lished as submitted by the authors.

iJET ‒ Vol. 15, No. 6, 2020 49

http://scratch.mit.edu/
https://scitools.com/
https://scitools.com/
https://www.grammatech.com/products/codesurfer
https://www.grammatech.com/products/codesurfer
http://www.imagix.com/products/source-code-analysis.html
http://www.imagix.com/products/source-code-analysis.html
http://www.thechiselgroup.com/shrimp/
http://www.thechiselgroup.com/shrimp/
http://epl.di.uminho.pt/~gepl/ALMA/
http://epl.di.uminho.pt/~gepl/ALMA/
https://doi.org/10.3991/ijet.v12i04.6442
https://doi.org/10.3991/ijet.v12i04.6442
http://swerl.tudelft.nl/bin/view/Main/ExTraVis
http://swerl.tudelft.nl/bin/view/Main/ExTraVis
http://dx.doi.org/10.3991/ijet.v11i02.5108
http://dx.doi.org/10.3991/ijet.v11i02.5108

