
Implementing a State-Based Application Using
Web Objects in XML

Carlos R. Jaimez González and Simon M. Lucas

Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester CO4 3SQ, UK

{crjaim,sml}@essex.ac.uk

Abstract. In this paper we introduce Web Objects in XML (WOX) as
a web protocol for distributed objects, which uses HTTP as its transport
protocol and XML as its format representation. It allows remote method
invocations on web objects, and remote procedure calls on exposed web
services. WOX uses URIs to represent object references, inspired by the
principles of the representational state transfer (REST) architectural
style. Using URIs in this way allows parameters to be passed, and values
returned, either by value or by reference. We present a case study, in
which an existing chart application is exposed over the Internet using
three different technologies: RMI, SOAP, and WOX. WOX proves to be
the simplest way to implement this application, requiring less program
code to be written or modified than RMI or SOAP. Furthermore, as a
consequence of its REST foundations, WOX is particularly transparent,
since any objects that persist after a WOX call may be inspected with
any XML-aware web browser. It is also possible to invoke methods of
persistent objects through a web browser.

1 Introduction

Exposing applications over the Internet has become essential for many areas,
due to the potential advantages of accessing data and objects from any place in
the world. For this purpose, there are many existing distributed object technolo-
gies such as the Remote Method Invocation (RMI) [6] and the Common Object
Request Broker Architecture (CORBA) [2], and web service technologies such
as XML-RPC [7] and the Simple Object Access Protocol (SOAP) [5]. Both dis-
tributed object and web service technologies allow applications to be remotely
accessible and allow more complex systems to be composed of components resid-
ing on geographically distributed machines. There are, however, some important
differences between these two technologies, which can affect their suitability for
specific types of applications.

Distributed object technologies base their functionality on two concepts: the
object’s reference, which allows a client application to refer to an existing object
and execute operations on it; and the object’s state, which is maintained between
operation calls that can modify it. On the other hand, web service technologies
in their current state do not have any of the concepts of distributed object pro-
gramming and consequently have significant limitations. They do not support

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 577–594, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



578 C.R. Jaimez González and S.M. Lucas

access to remote objects, but instead they provide standalone services through
the web by exchanging eXtensible Markup Language (XML) [3] messages, and
attempt to solve the interoperability problem that exists with distributed ob-
ject technologies. Although existing distribute object systems such as CORBA
and RMI can work on the web by tunneling their requests through HTTP, this
decreases their performance, and can be a technically demanding task.

The suitability of every technology to implement a given application and
expose it over the web depends on a series of aspects that need to be considered,
such as the importance of interoperability between languages, the encoding of
messages, the maintenance of object references (object state), the efficiency in
the transfer of data, the support and extensibility of data types, the ease of use
and implementation, among others. To explore the issues, we present a case study
based on a simple state based data charting application, which was originally
implemented in Java. The original application is stateful, and allows data to
be incrementally added to a chart object. A user creates a chart object with a
title, and can then successively add data-points; this incremental style makes the
chart application very easy to use for a client program. For our case study, the
application needs to be exposed over the Internet, preserve the state of objects,
and have access to remote objects. The use of XML as the encoding format
for objects provides a simple text representation of any kind of data, which is
machine and human readable, and it also provides a standard format to transfer
data, which could lead to language independence. With the existing distributed
object and web service technologies, it would be possible to implement such an
application, but considerable extra programming effort would be required.

Web Objects in XML (WOX) is a web distributed object protocol that of-
fers features from distributed object programming and web services to expose
applications over the Internet. WOX allows the creation of remote objects, the
invocation of methods on remote web objects and the invocation of remote pro-
cedure calls on exposed web services, among other operations. WOX uses HTTP
as its transport protocol, XML as its format representation, and makes objects
available through their own Uniform Resource Identifier (URI) [8], inspired by
the principles of the Representational State Transfer (REST) [9] architectural
style. WOX is simple and light-weight.

This paper is organized as follows. Section 2 introduces the WOX architecture,
the set of client operations supported, and the format of the XML messages
exchanged. A case study is presented in section 3, in which RMI, SOAP and
WOX are evaluated to implement a chart application and deploy it over the
web. Finally, conclusions and future work are given in section 4.

2 Web Objects in XML (WOX)

This section presents the WOX architecture, the operations allowed from a
client application, the web browser interface to invoke operations on web ob-
jects, and the format of the XML messages exchanged between a WOX client
and a WOX server. WOX is a working prototype that can be downloaded from



Implementing a State-Based Application 579

http://algoval.essex.ac.uk/wox/Downloads.html. It is straightforward to
install and use. It is also accompanied of a set of client example programs.

2.1 WOX Design

We based the design of WOX on standard object-oriented concepts, distributed
object programming and resource-oriented (REST) web services.

The WOX architecture is based on interfaces, which separates two important
notions in distributed systems: the definition of behaviour given by the inter-
face, and the implementation of that behaviour. A WOX server will have the
implementation of the service, and a WOX client will have only an interface of
that service in order to create objects, access them, and execute operations.

The nature of WOX required a strong object-oriented language, which fulfilled
all of our requirements. We decided to implement it in Java [4] because it is
a platform independent language (although we are also implementing a WOX
serializer, and WOX client libraries in C#), which makes our system runnable on
a variety of platforms; it is free and not restricted to the use of any commercial
tool; and it highlights the concept of an interface, which makes it ideal for a
distributed system.

It is important to note that RMI [6] also uses interfaces to allow access to
remote objects, but in a very different way, which can be somewhat tedious in
practice. We provide in our case study an explanation of the set of steps and
changes required in order to implement the chart application using RMI. In this
respect, a WOX client only needs a simple interface of the service.

A WOX client makes method invocations on a proxy that is created dynam-
ically for the interface. A dynamic proxy is basically a class that implements a
list of interfaces provided at runtime, such that method invocations through one
of the interfaces on an instance of the class will be dispatched to another object
[16]. The proxy translates the method invocation to XML and sends it to the
WOX server. This mechanism uses the proxy design pattern [1].

One of the main ideas behind WOX is to expose remote objects through their
own URI [8] and allow clients to have access to them. URIs are used to identify
objects inspired by the principles of the REST architectural style. The notion of
URI has been widely and successfully used by the web, and it is also a standard
way to identify resources. Proponents of REST [10,11,12] argue that objects
should be identified through their own URI, because this is how the web works.

Remote references in WOX are URIs, so that a client can refer to a remote
object by specifying its URI. The XML encoding of a WOX object can be viewed
by typing the URI into the address bar of a standard XML-aware web browser.

The concept of remote reference in WOX is widely used because a client can
request a remote reference to a specific object, pass remote references as param-
eters, and also receive results from method invocations as remote references. A
basic example of the mechanism used by WOX in a method invocation is shown
in Figure 1, and the detailed steps carried out are described in the following list.



580 C.R. Jaimez González and S.M. Lucas

1. The WOX client program invokes a method on a remote reference (the way
in which the client invokes a method on a remote reference is exactly the
same as that on a local object, as far as the client program is concerned).

2. The WOX dynamic proxy takes the request, serializes it to XML, and sends
it through the network to the WOX server.

3. The WOX server takes the request and de-serializes it to a WOX object.
4. The WOX server loads the object and executes the method on it.
5. The result of the method invocation is returned to the WOX server.
6. The WOX server serializes the result to XML and either the real result or a

reference to it is sent back to the client. The result is saved in the server in
case a reference is sent back.

7. The WOX dynamic proxy receives the result and de-serializes it to the ap-
propriate object (real object or remote reference).

8. The WOX dynamic proxy returns the result to the WOX client program.

From the WOX client program’s point of view it just makes the method
invocation and gets the result back in a transparent way. WOX can refer to
remote objects that reside in the same WOX server as that of the object (a
relative URI can be used), or to remote objects located anywhere on the Web.

Client
program

Dynamic
Proxy

Method
invocation

Return
result

WOX
server

Web
object

Actual method
invocation

Return
result

Serialize
to XML

Serialize
result to XML

Desearilize to
WOX object

Desearilize
result

Internet

1 2 3 4

5678

Fig. 1. A remote method invocation in WOX

2.2 WOX Client Operations

This subsection introduces the fundamental operations supported in WOX, and
those not covered here are described in [14]. A set of client code examples can
be found at http://algoval.essex.ac.uk/wox/Examples.html.

Creation of a new object. When a WOX client program requests the creation
of an object, the WOX server creates the object and stores it. The WOX server
returns to the client, based on the policy chosen, either the actual object or a
remote reference to it. The remote reference is specified by a URI that points to
the actual object. Once the WOX client program holds the actual object or the
remote reference, it can invoke instance methods on it.



Implementing a State-Based Application 581

Chart chart = (Chart) WOXProxy.newObject
(serverURL, className, args, policy);

The code above creates a chart object of type Chart, which is a user-defined
interface to hold either a real object or a remote reference to it. WOXProxy is a
class provided by the WOX client libraries to allow the execution of WOX oper-
ations like newObject that takes four parameters: serverUrl, which represents
the URL where the WOX server can be contacted to create the object (e.g.
http://csres109:8080/WOXServer/WOXServer.jsp); className is the pack-
age qualified class name of the object to be created; args are the set of arguments
used to construct the object; and policy is an integer number that represents
whether a real object or a remote reference must be returned. The policy param-
eter also specifies the default mode in which WOX operates for future method
invocations on the object (whether it returns real objects or remote references).

Request for a remote reference. A remote reference is requested by a WOX
client program to invoke instance methods on the object to which the remote
reference refers to, or simply to use it as a parameter in another method invo-
cation. In this type of request, the WOX server looks for the specific object and
returns a reference to it. The code example below gets a remote reference to a
Chart object. The objectUrl parameter is the URL where the object is located.
A WOXException will be thrown if there is no object at the URL specified.

Chart chart = (Chart) WOXProxy.getReference(objectUrl);

Static Method Invocation. A static method invocation is similar to a web ser-
vice remote procedure call (like in SOAP[5], XML-RPC[7], or JSON-RPC[19]),
in the sense that the WOX client requires no access to a particular object stored
in the WOX server. When a static method invocation is requested, the WOX
client invokes the invokeService method of WOXProxy class, in which it is spec-
ified the particular method to be executed (methodName), the class to which it
belongs (className), the set of parameters received by the method (args), and
the mode of operation (policy). The WOX server executes the method and re-
turns the result. A WOXException will be thrown if the WOX server cannot find
the method with the signature specified.

An important difference between web service remote procedure calls and WOX
static method invocations is that a WOX client can also specify using the policy
parameter, whether the result returned is the actual result, or a reference to it.
Moreover, SOAP does not handle remote references, XML-RPC has a limited
set of data types, and JSON-RPC does not support marshalling of objects with
circular references.

An example of a WOX static method invocation is shown below, in which its
return type is the user-defined interface Manager. The interface Manager is used
in this example, but it could be used any other interface or concrete class, as
long as it is consistent with the return type of the method invocation and the
policy chosen in the WOX operation.



582 C.R. Jaimez González and S.M. Lucas

Manager manager = (Manager) WOXProxy.invokeService (serverUrl,
className, methodName, args, policy);

Instance Method Invocation. When a WOX client holds a remote reference,
it can invoke instance methods on it in the same way as if it was a local object.
The WOX mechanism will redirect the call through the network to the WOX
server, which will in turn execute the method on the specific object. Once the
method has been executed, the WOX server returns the result to the client. It
should be noticed that a remote reference is actually a dynamic proxy on which
the WOX client invokes methods. In the code below the client gets a remote
reference to a Chart object, and then invokes its getImage instance method.

Chart chart = (Chart) WOXProxy.getReference(objectUrl);
byte[] graph = chart.getImage();

Destruction of an object. When a client does not require a remote object
any more, it should be destroyed and garbage collected. Our current prototype
of WOX includes an operation to explicitly destroy an object by providing its
URI. However, in a future release, we could also allow clients to specify how long
the object’s life should be, and when the time for the destruction was reached
then the object would be destroyed (i.e. removed from persistent storage). We
appreciate that one of the reasons that SOAP does not allow object references is
to eradicate any problems with distributed garbage collection, but believe that
for many problem domains, object references are essential. We predict that for
particular application areas and user communities, sensible usage policies will
evolve given a suitably flexible framework.

2.3 Web Browser Interface

This subsection describes another way of executing WOX operations. As part
of its REST foundations, WOX objects can be inspected by an XML-aware web
browser. Furthermore, methods can be invoked on persistent objects using a web
browser interface. This mode of operation allows clients to execute methods on
a specific object without needing a Java client program.

Inspecting a web object. Every object that is persisted after a WOX call is
stored in XML and can be inspected by a web browser. Below is the XML repre-
sentation of a Manager object, which was used in one of our previous examples.

<object type="company.Manager" id="0">
<field name="name">
<object type="String" id="1">Robin Dyson</object> </field>

<field name="age" type="int" value="35" />
<field name="department">
<object type="String" id="3">Finance</object> </field>

</object>



Implementing a State-Based Application 583

Invoking methods on a web object. Since every object can be identified
uniquely, it is also possible to invoke methods on persistent objects through a
web browser. A method invocation on a Manager object is as follows.

http://csres109:8080/WOXServer4/invokeMethod.jsp?
objectId=Manager645313585&method=getName

The method invocation shown above would invoke the getName method of
the Manager645313585 object. The result of the method invocation would be
returned as XML, which is the default mode of operation for WOX answers, but
it can also be returned as html (by specifying mode=html in the query string),
in which case only the string would be returned. There is a special case in which
WOX can also return an image (mode=image) when the return type of a method
is an array of bytes. This mode of operation will be presented in the case study.

Using a web browser, WOX is also capable of invoking methods with pa-
rameters of primitive data types, but not with parameters of other data types,
like user-defined classes. This way of operation through the browser is similar
to the way in which Apache Axis [13] allows to invoke methods of classes. The
main differences are that Axis, which is SOAP based, does not have the con-
cept of an object, thus the methods are invoked as if they were static methods.
Another important difference in this mode of operation is that Axis does not
support package qualified classes. In this respect, WOX enables the invocation
of methods on any web object, and methods of any package qualified class.

Alternatively, WOX provides a user interface with all the possible methods to
invoke on a specific web object. This can be accessed by typing the same URL
presented before, but omitting the method parameter. WOX will present all the
methods available for invocation on that object. Figure 5 in subsection 3.4 shows
this web user interface with some of the methods available for a Chart object.

When clicking the Invoke Method button of the desired method, a query string
is built with all the information needed for the method invocation. The request
is made to the WOX server, which will send an answer via an XML message
with the result of the method invocation.

2.4 XML Messages in WOX

An XML message in WOX is a request from a WOX client or the response sent
back from a WOX server. A request can be any of the operations described in the
previous section, while the response could be a real object, a remote reference,
or an exception generated by the WOX server.

Since our system is based on object-oriented programming, the XML messages
are generated by serializing objects of different classes according to the request
made by a client, or the result or exception generated by the server. Some of these
classes are shown in Figure 2, which contain attributes with all the information
required to accomplish the request made. For example, the WOXConstructor
class represents a request of object creation, where the className attribute
specifies the name of the class of the object to be created, types and args are
arrays that contain the parameters needed to construct an instance of the class,



584 C.R. Jaimez González and S.M. Lucas

- className: String
- types: String[ ]
- args: Object[ ]
- returnType: String

WOXConstructor

# className: String

# types: String[ ]
# args: Object[ ]
# returnType: String

WOXMethod

# methodName: String
- objectUrl: String

- interfaces: String[ ]

WOXReference

- className: String

- objectUrl: String

WOXInstanceMethodWOXStaticMethod

Fig. 2. Some WOX classes

and returnType indicates whether a remote reference or a real object must be
returned. The WOXMethod, WOXStaticMethod and WOXInstanceMethod classes
represent method invocations; and WOXReference remote references.

In addition to the classes shown in Figure 2, there are some other classes
to represent all of the operations described in the previous section, such as
WOXDestructor, WOXUpdate, WOXUpload, etc. Similarly there are classes to rep-
resent exceptions thrown by a WOX server, which inherit from WOXException.

The XML message shown below represents a static method invocation (an
object of the WOXStaticMethod class). Although our WOX prototype (WOX
serializer, WOX client libraries, and WOX server) is only implemented in Java
(we are implementing a WOX serializer, and part of our WOX client libraries in
the C# programming language), the XML messages should be appropriate for
any other object-oriented programming language.

<object type="server.WOXStaticMethod" id="0">
<field name="className">
<object type="String" id="1">problems.test.MathClass</object>

</field>
<field name="methodName">
<object type="String" id="2">returnArrayInt</object> </field>

<field name="types">
<array type="String" length="1" id="3">
<object type="String" id="4">int</object> </array> </field>

<field name="args">
<array type="Object" length="1" id="5">
<object type="Integer" id="6">5</object> </array> </field>

<field name="returnType">
<object type="String" id="7">Copy</object> </field>

</object>

2.5 WOX Server Operation

Every request of a WOX client is received by the WOX server as an XML
message, it is de-serialized to a WOXAction object, and its doAction method is



Implementing a State-Based Application 585

+ doAction( ): Object

WOXConstructor WOXMethod

+ doAction( ): Object

WOXReference

+ doAction( ): Object

WOXInstanceMethod

+ doAction( ): Object

WOXStaticMethod

+ doAction( ): Object

WOXAction

+ doAction( ): Object

Fig. 3. WOXAction hierarchy diagram

executed. Figure 3 illustrates the hierarchy diagram for the WOXAction class.
WOXConstructor, WOXInstanceMethod, WOXStaticMethod and WOXReference
extend WOXAction. This mechanism allows a WOXAction object to invoke the
doAction method of the appropriate class, which is coded differently, based on
the type of request. This design is very flexible in the sense that there can be
any other types of new requests without modifying the existing code. New types
of requests would be represented as classes that extend the WOXAction class.

2.6 Limitations

WOX in its current state has also limitations, that somewhat can be seen as
features not included in this release. A list is presented along with an explanation:

- Language independence: Although all the messages are represented in XML,
WOX server and WOX client libraries have been only developed using the Java
programming language, but we believe that the XML messages generated by
WOX are appropriate to be implemented in any other class-based object-oriented
programming language, such as C#, C++, Ruby, or Smalltalk. Our initial ap-
proach has been to develop our WOX serializer in C#.

The main issue to be considered when implementing WOX in other object-
oriented programming languages is the serialization process, which is actually
how objects will be represented in XML. This leads to consider multiple in-
heritance, and other programming language-specific features, which would be
represented in the XML message.

- Security and ownership of objects: WOX does not support the concept of
ownership of an object nor security policies for accessing web objects. Any client
can have access to any objects created previously by another client. There is no
restriction on who is executing what method of what object. It is just necessary
for a client to have the URL to be able to access the object. For most practical
applications, this would be a severe limitation, but at the prototype stage we
did not want to be distracted by these considerations. However, since WOX is
layered over HTTP, any HTTP-based security mechanism could be used.



586 C.R. Jaimez González and S.M. Lucas

- Asynchronous processes: All the operations in WOX are synchronous, which
means that a result is immediately sent back to the caller. Asynchronous oper-
ations would allow clients to submit their jobs or processes and wait for results.
Results would be returned to the caller normally via a callback operation.

- Object navigation: All the objects that persist after a WOX call can be
inspected through an XML-aware web browser. An additional feature in WOX
would allow clients to navigate through object graphs and be able to request spe-
cific nodes (objects). The use of an object-oriented db as the persistent storage
for objects, such as db4o[17], could facilitate the implementation of this feature.

3 Case Study

This section presents a case study, in which a chart application is exposed
through the Internet using three different technologies: RMI as a distributed
object technology; SOAP as a web service technology; and finally our WOX pro-
totype as a technology with features from both paradigms. The next subsections
describe the chart application, and focus on the set of steps needed to implement
it in the three different technologies. A different case study, describing a pattern
recognition application, can be found in [15]. The case study presented in this
section shows how best to deploy this chart application over the web with exist-
ing technologies and WOX. We chose this simple case study to introduce WOX,
but we are already working on a more realistic application (the development
of a game server) to demonstrate our ongoing work, which covers some of the
limitations described in the subsection 2.6.

3.1 The Chart Application

The chart application we want to expose through the Web is used to input the
data we collect from our experiments, get a statistical summary of the data,
and get an image with a line graph of the data provided. The way in which the
chart application works is very simple. We generate a new Chart object for every
experiment, which will collect all the data for that particular experiment. The
following line of code would create a LineChart object labeled WOX Experiment.

Chart chart = new LineChart("WOX Experiment");

Every time a new result from an experiment is ready it can be added to the
chart object. The following code gets a new result from an experiment and adds
it to the previously created Chart object. Since this is only for demonstration
purposes we are using the getResult static method of the Experiment class
(which returns a randomly generated double value), but this could be easily a
method of any object which actually returns a result.

double x = Experiment.getResult();
chart.addValue(x);



Implementing a State-Based Application 587

Values are added to a chart object as results come from an experiment. Once
the experiments have finished we can invoke the getImage method to get an
array of bytes representing a line chart image.

byte[] image = chart.getImage();

In this simple application, the chart object would be created once, and ex-
periments could be run over the world and use the chart object to add new
results to it. This would also allow you to get a graph with the results at any
point in time. This application is clearly state-based, because it needs to do the
data collection, which will serve to do the statistical summary and generate the
graph. The application consists of the Chart interface and the LineChart class.

The aim of the case study is to evaluate how well the deployment of the
chart application is supported in the three different technologies: RMI, SOAP,
and WOX. The deployment of this application through the Internet will allow
clients ideally to refer remotely to chart objects that were created previously. In
that way, clients do not need to hold chart data objects in their own computers,
and they can also eventually save time by requesting a reference to an existing
chart object. They can also add new values to the chart object and request an
updated graph. A more realistic example would also allow chart styles to be set
up and referenced. The implementation of this application will need to maintain
the state of the objects and some mechanism to handle remote references.

3.2 Implementation Using RMI

In order to implement the chart application in RMI, several changes must be
made to the original java source files, and follow a list of steps to make the objects
remotely accessible to client applications. Since this is a very simple application
the changes required will be only to the Chart interface and the LineChart class.

Modifying the original classes. The set of modifications to the classes in the
chart application are described in the following list.

- Select the interface that clients will be using to access remote objects on the
server. In this case the Chart interface would be used for this purpose.

- The Chart interface must extend the java.rmi.Remote interface provided
in the Java API. The java.rmi.RemoteException exception must be thrown
by all its method signatures.

- The LineChart class also needs to throw the java.rmi.RemoteException
exception in every one of its methods and constructors.

- Those classes that will be traveling through the network must implement
the java.io.Serializable interface. This is the case for the LineChart class.

- In order to expose chart objects remotely it is necessary either to extend
the java.rmi.server.UnicastRemoteObject class or to specify that in the con-
structor of the class, when the object is created. In this case LineChart class
must extend the UnicastRemoteObject class.

An alternative solution to implement this application using RMI could be to
provide wrapper classes for every class or interface that requires modifications.



588 C.R. Jaimez González and S.M. Lucas

Those new wrapper classes would contain the modifications described in this
section, and the original source classes would not be affected.

Deploying and running the application. Once the source files have been
changed as described,the following steps must be carried out:

- Generate the stub for the remote interface Chart, by executing the rmic
stub compiler (even though this is no longer required in Java 5 or later version,
as dynamic proxies are generated). A client application will need the remote
interface and the stub generated in order to access the remote objects.

- On the server side computer it will be required to copy all the classes and
interfaces modified and start up the Object Registry (this is where client appli-
cations will find the remote objects). A server program needs to be written to
create and register some objects in the Object Registry. In this case, the server
program will have to create LineChart objects. These objects will actually be
the remote objects available to the clients. It must be noticed that this server
program creates some objects, which will be available for clients to access. Some
extra methods would have to be provided in the LineChart class in order to
allow clients to create their own objects.

- Client applications require the interface Chart, in addition to the stub gen-
erated by the rmic compiler (stubs are not required for Java 5). A sample code
for a client application that uses RMI is shown below. The code gets a remote
reference to a chart object, which has been created by the server program in
the Object Registry. The client application can work with the remote reference
as if it was a local object. It adds a new value to the chart object and then it
gets an updated image with the line graph. One restriction as stated before is
that clients are not able to create their own remote chart objects directly, even
though extra methods could be provided to do so.

Chart chart = (Chart) Naming.lookup("chart01");
double x = Experiment.getResult();
chart.addValue(x);
byte[] image = chart.getImage();

Extra work would be needed to expose those objects over the Web, in which
RMI tunnels its requests through HTTP. We could also have chosen to implement
the entire chart application with Enterprise JavaBeans (EJB) Technology[20]
(which is a more powerful technology that communicates through RMI) and an
application server, such as JBOSS[21]; but we know that EJBs introduce many
more unnecessary steps for this simple type of application. We would have had
to deal additionally with EJB and home objects, home and local interfaces, and
deployment descriptors.

3.3 Implementation Using SOAP

The implementation of the chart application using SOAP needs many more
changes than those in RMI, because the application requires maintenance of the
state of the objects between method calls, which SOAP does not support. In



Implementing a State-Based Application 589

order for SOAP to refer to remote objects a considerable extra programming
effort is required, which leads to changes in the source classes or the creation
of wrapper classes to encapsulate the instantiation and maintenance of remote
objects. We prefer the latter method.

Creating wrapper classes. Following the idea of writing wrapper classes,
there must be a mechanism to maintain the objects created by the client, and
to refer to them. Figure 4 illustrates a class diagram that shows how to wrap up
the original classes in the chart application in order to be able to expose chart
objects remotely. The following changes are needed:

Fig. 4. Wrapper classes for the chart application

- A ChartWrapper interface that represents the SOAP interface of the ser-
vice, which wraps up the Chart interface. ChartWrapper takes each instance
method of the original Chart interface, and adds an id parameter to them. An
example is illustrated below, where the signature of the addValue method in the
ChartWrapper interface has now an additional parameter.

public void addValue(String id, double x);

- A ChartWrapperImpl class which is an implementation of ChartWrapper
interface, and maintains a map of chart objects. The map can be maintained
in memory or persistent storage. This implementation of the service will allow
maintaining the state of chart objects on the server.

- A LineChartWrapper class that implements the Chart interface and provides
a wrapper for LineChart class on the client side. It will be the interface of
the service to the client. Clients will create chart objects of LineChartWrapper
class instead of LineChart class, as can be seen from the code below. The class
LineChartWrapper contains the logic to maintain the state of a chart object
on the client side by keeping track of the id sent by the server to identify a
specific chart object. LineChartWrapper class uses a proxy mechanism to send
the requests from the client to the appropriate web service on the server.

Chart chart = new LineChartWrapper("WOX Experiment");
double x = Experiment.getResult();



590 C.R. Jaimez González and S.M. Lucas

chart.addValue(x);
byte[] image = chart.getImage();

- A Proxy class that receives the request from the client, extracts from it
the web service name to be executed and the set of input parameters needed to
invoke it. Each parameter must be mapped to the appropriate XML data type
by using the serializers provided in SOAP, which can only serialize primitive
data types, arrays, vectors, and user-defined classes that follow the Java Bean
conventions. If there are other classes in the application to be serialized, then it
would be also required to provide serializers for them. Those provided in SOAP
require the classes to be modified to follow certain conventions in order to work
properly. For example if a bean serializer is used, then the class to be serialized
must follow the Java Bean conventions. On the other hand, one can write its
own custom serializers, though it is a demanding and time-consuming task.

- The classes in the original chart application were modified to provide set and
get methods for all their attributes, in order for them to be serialized properly.

Deploying and running the application. The deployment of the SOAP-
version of this chart application involves the following steps.

- Copy to the server all those classes of the original application, in addition
to ChartWrapper and ChartWrapperImpl, which define the SOAP service.

- Write a deployment descriptor to actually deploy the chart service on the
server. The deployment descriptor specifies the name of the web service, the java
class to be used for the service, the methods that can be invoked by clients, the
scope of the web service, and the type mappings, which define the serializers to
be used for user-defined classes.

- On the client side it will be required the classes of the original application,
in addition to the Proxy class and the LineChartWrapper class, which will be
the interface of the service to the clients.

- Running the application involves creating a chart object, adding some values
to it, and getting the image with the line chart.

Despite the application is functional after all the modifications made and
the lengthy procedure, it still has some drawbacks in the serialization efficiency.
SOAP lacks of an efficient way for serializing arrays of primitive datatypes. Table
1 in subsection 3.4 shows a comparison in time and storage space between WOX
and SOAP when they serialize an array of a primitive data type.

3.4 Implementation Using WOX

The implementation of this chart application in WOX is straightforward. For this
application there is no need to create stubs for clients, rewrite classes to extend
or implement interfaces, change method signatures to throw remote exceptions,
write wrapper classes, or any extra programming effort, as long as the services
to be exposed have an interface and an implementation.

The Chart interface and the LineChart class will reside on the server side,
with no modifications. The client application will need the Chart interface in



Implementing a State-Based Application 591

order to create new remote chart objects, access them, and invoke methods on
them. Note that there could be more Chart implementations added to the server,
and there would be no need to edit any configuration files, or recompile any
classes. The only requirement is that the WOX server can locate the necessary
classes to execute the implemented methods. However if methods were added to
the interface, the client would need the new interface in order to invoke the new
methods. A WOX client would use the fragment of code shown below to use the
chart application.

Chart chart = (Chart)WOXProxy.newObject(serverUrl,classN,args,pol);
double x = Experiment.getResult();
chart.addValue(x);
byte[] image = chart.getImage();

The first statement creates a Chart object. The serverUrl is the URL of the
WOX server; classN is the class of the object to be created (stats.LineChart
in this case); args are the set of arguments used to construct the object; and
pol is an integer value that represents whether the real object or a reference to
it must be returned from the WOX server (we specify that a remote reference
must be returned, since we want the chart objects on the server side).

Requesting a remote reference of a chart object is particularly useful in this
application that needs to preserve the state of the object, which is modified by
adding values to the chart. In cases such as this the ability of WOX to allow
clients to create and manipulate objects on the server becomes essential. While
it is possible to do the same with SOAP with considerable extra programming
effort, as we have shown in the previous subsection, the difference is that WOX
actively supports this stateful style of interaction.

The process of creating a remote object continues when the WOX server
receives the request, creates the chart object and returns the remote reference
to the client. When the WOX client receives the remote reference to the new
object, it creates a proxy that implements the Chart interface. This proxy will
be used to make the subsequent method invocations on the remote object. The
third and fourth code statements from the code above are adding a new value
to the chart and getting an image with a line graph.

Since adding values to a chart object and getting an image with a graph are
method invocations on a chart object, they can also be executed through the
web browser user interface that WOX provides. Figure 5 shows the user interface
provided by WOX to invoke methods on the chart object previously created.
The getImage method has 3 different modes of operation: xml to return the
array of byte serialized in xml, html to get the plain array of byte, and image
to get the actual image shown in the web browser. This mode of interaction is
only possible in the web browser interface. It actually uses the image/jpeg MIME
type [18] to decode the array of byte when it is sent to the web browser. The
possibility to include other MIME types to a WOX server would allow to decode
array of bytes into specific formats that can be displayed by a web browser (e.g.
audio and image files, text documents, etc.).



592 C.R. Jaimez González and S.M. Lucas

Fig. 5. Web browser interface to invoke methods on a Chart object

Fig. 6. Method invocations through the web browser

It can also be possible to build a URL with a query string specifying the
method to be invoked, the parameters needed, and the mode of operation. Fig-
ure 6 shows three different invocations of the getImage method using the image
mode. Clients can access the chart object either via a Java client program,
through this web browser interface, or simply by building a URL with an appro-
priate query string.

A fragment of the XML message returned from the WOX server with the
array of byte is shown below. It is encoded using base64.

<array type="byte" length="3023" id="0">
iVBORw0KGgoAAAANSUhEUgAAAQ4AAAC0CAIAAADq9VVVAAAIg0lEQVR42
<!-- rest of array omitted -->

</array>

WOX serialization process transfers data in XML in a more optimized way
than SOAP. By default, SOAP uses an XML element for each element of an array
of primitive elements (such as int for example). This means that SOAP-encoded
arrays can be over 40 times the size of their binary encoding. The exception to
this are byte arrays like the one illustrated above, which are encoded efficiently
using base-64 (which WOX also uses for byte arrays). Given the speed of modern
computers, and the fact that many of us have access to high bandwidth Inter-
net connections, this difference in encoding efficiency might seem unimportant.
However, Table 1 emphasizes how significant this difference is, both in time and
space usage. For arrays of more than 30,000 int, the SOAP server (Apache Axis)
crashed with an out of memory error.

Using WOX to implement the chart application allows other clients to have
access to chart objects remotely through their own URI, either by using a Java
client program or the web browser user interface. Client applications are also
able to create their own chart objects, and add new values to existing ones.



Implementing a State-Based Application 593

Table 1. Time and space usage for passing an array of 20,000 int in WOX and SOAP

Method Time (ms) Size (KB)

WOX 80 106
SOAP 3,300 4,200

4 Conclusions and Future Work

In this paper we introduced WOX (Web Objects in XML), which is a web dis-
tributed object protocol that allows remote method invocations on web objects,
and remote procedure calls on exposed web services. WOX uses HTTP as its
transport protocol and XML to encode the messages exchanged between client
and server. WOX exposes object references as URIs, inspired by the principles
of the Representational State Transfer architectural style. Using URIs in this
way allows parameters to be passed, and values returned, either by value or by
reference. WOX objects can also be accessed through a web browser interface,
from which methods invocations can be executed. We described the WOX ar-
chitecture, the set of client operations supported, the web browser interface, the
format of the XML messages, and the WOX operation modes.

We also presented a case study, in which a state-based chart application is
described and exposed over the Internet using three different technologies: RMI,
SOAP and WOX. WOX proves to be the most straightforward system for im-
plementing this type of application. Applications like the one presented in this
paper, which has some special features such as being accessible remotely over the
Internet, maintaining the state of objects, having access to remote objects, stor-
ing them in a standard text format (XML), among others, can be implemented
using WOX. The possibility to inspect the object through an XML-aware web
browser and execute method invocations on web objects via a web browser are
also built-in features of WOX. The ease of use to implement this type of appli-
cations is another of its advantages over the other technologies discussed.

The limitations or features not included in WOX have also been discussed.
They include the language independence given by the XML messages generated
by WOX; the security and ownership of objects; the support for asynchronous
processes; and the possibility to navigate through web objects. Even in its current
state, however, we are already putting WOX to good use, and find it to be a
simple, easy to use, and robust protocol.

References

1. Gamma, E., Halm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

2. Common Object Request Broker Architecture (CORBA) Object Management
Group (2000), available at http://www.omg.org

http://www.omg.org


594 C.R. Jaimez González and S.M. Lucas

3. Extensible Markup Language (XML), World Wide Web Consortium, available at
http://www.w3.org/TR/REC-xml/

4. Java Technology Sun Microsystems (1994), available at http://java.sun.com
5. Latest SOAP Versions, World Wide Web Consortium (2003), available at

http://www.w3.org/TR/soap/
6. Wollrath, A., Waldo, J.: The Java Tutorial, Trail: RMI Sun Microsystems, available

at http://java.sun.com/docs/books/tutorial/rmi/
7. Winer, D.: XML-RPC Specification, available at http://www.xmlrpc.com/spec
8. Berners-Lee, T.: Universal Resource Identifiers - Axioms of Web Architecture,

World Wide Web Consortium, available at http://www.w3.org/DesignIssues/
Axioms.html

9. Fielding, R.: Architectural Styles and the Design of Network-based Software Archi-
tectures, available at http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm

10. Costello, R.: Building Web Services the REST Way, xFront, available at
http://www.xfront.com/REST-Web-Services.html

11. Prescod, P.: Second Generation of Web Services, available at
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

12. He, H.: Implementing REST Web Services: Best Practices and Guidelines, available
at http://www.xml.com/pub/a/2004/08/11/rest.html

13. Web Services - Axis, available at http://ws.apache.org/axis/ ASF, 2004
14. Jaimez González, C., Lucas, S.: Web Objects in XML: a Web Protocol for Dis-

tributed Objects, Technical Report, University of Essex (2005)
15. Jaimez González, C., Lucas, S.: Implementing a Pattern Recognition Application

Using RMI, SOAP and WOX, Technical Report, University of Essex (2005)
16. Dynamic proxy classes, Sun Microsystems (1999), available at

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
17. db4o database (2006), available at http://www.db4objects.com/,db4objects
18. MIME Media Types, Internet Assigned Numbers Authority (1999), available at

http://www.iana.org/assignments/media-types/
19. JSON-RPC 1.1 Specification Working Draft (2006), available at

http://json-rpc.org/wd/JSON-RPC-1-1-WD-20060807.html
20. Enterprise JavaBeans Technology, Java Platform, Enterprise Edition (Java EE)

(2007), available at http://java.sun.com/products/ejb/
21. JBoss Application Server (2007), http://www.jboss.org/products/jbossas

http://www.w3.org/TR/REC-xml/
http://java.sun.com
http://www.w3.org/TR/soap/
http://java.sun.com/docs/books/tutorial/rmi/
http://www.xmlrpc.com/spec
http://www.w3.org/DesignIssues/Axioms.html
http://www.w3.org/DesignIssues/Axioms.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.xfront.com/REST-Web-Services.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://www.xml.com/pub/a/2004/08/11/rest.html
http://ws.apache.org/axis/
http://java.sun.com/j2se/1.3/ docs/guide/reflection/proxy.html
http://www.db4objects.com/, db4objects
http://www.iana.org/assignments/media-types/
http://json-rpc.org/wd/JSON-RPC-1-1-WD-20060807.html
http://java.sun.com/products/ejb/
http://www.jboss.org/products/jbossas

	Implementing a State-Based Application Using Web Objects in XML
	Introduction
	Web Objects in XML (WOX)
	WOX Design
	WOX Client Operations
	Web Browser Interface
	XML Messages in WOX
	WOX Server Operation
	Limitations

	Case Study
	The Chart Application
	Implementation Using RMI
	Implementation Using SOAP
	Implementation Using WOX

	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




